scholarly journals Some New Characterizations of Graph Colorability and of Blocking Sets of Projective Spaces

10.37236/3767 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Uwe Schauz

Let $G=(V,E)$ be a graph and $q$ be an odd prime power. We prove that $G$ possess a proper vertex coloring with $q$ colors if and only if there exists an odd vertex labeling $x\in F_q^V$ of $G$. Here, $x$ is called odd if there is an odd number of partitions $\pi=\{V_1,V_2,\dotsc,V_t\}$ of $V$ whose blocks $V_i$ are \(G\)-bipartite and \(x\)-balanced, i.e., such that $G|_{V_i}$ is connected and bipartite, and $\sum_{v\in V_i}x_v=0$. Other new characterizations concern edge colorability of graphs and, on a more general level, blocking sets of projective spaces. Some of these characterizations are formulated in terms of a new switching game.

Author(s):  
Fairouz Beggas ◽  
Hamamache Kheddouci ◽  
Walid Marweni

In this paper, we introduce and study a new coloring problem of graphs called the double total dominator coloring. A double total dominator coloring of a graph [Formula: see text] with minimum degree at least 2 is a proper vertex coloring of [Formula: see text] such that each vertex has to dominate at least two color classes. The minimum number of colors among all double total dominator coloring of [Formula: see text] is called the double total dominator chromatic number, denoted by [Formula: see text]. Therefore, we establish the close relationship between the double total dominator chromatic number [Formula: see text] and the double total domination number [Formula: see text]. We prove the NP-completeness of the problem. We also examine the effects on [Formula: see text] when [Formula: see text] is modified by some operations. Finally, we discuss the [Formula: see text] number of square of trees by giving some bounds.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750014 ◽  
Author(s):  
Johan Kok ◽  
N. K. Sudev ◽  
U. Mary

Let [Formula: see text] be a finite and simple undirected connected graph of order [Formula: see text] and let [Formula: see text] be a proper vertex coloring of [Formula: see text]. Denote [Formula: see text] simply, [Formula: see text]. In this paper, we introduce a variation of the well-known Zagreb indices by utilizing the parameter [Formula: see text] instead of the invariant [Formula: see text] for all vertices of [Formula: see text]. The new indices are called chromatic Zagreb indices. We study these new indices for certain classes of graphs and introduce the notion of chromatically stable graphs.


10.37236/947 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Mark E. Watkins ◽  
Xiangqian Zhou

The distinguishing number $\Delta(X)$ of a graph $X$ is the least positive integer $n$ for which there exists a function $f:V(X)\to\{0,1,2,\cdots,n-1\}$ such that no nonidentity element of $\hbox{Aut}(X)$ fixes (setwise) every inverse image $f^{-1}(k)$, $k\in\{0,1,2,\cdots,n-1\}$. All infinite, locally finite trees without pendant vertices are shown to be 2-distinguishable. A proof is indicated that extends 2-distinguishability to locally countable trees without pendant vertices. It is shown that every infinite, locally finite tree $T$ with finite distinguishing number contains a finite subtree $J$ such that $\Delta(J)=\Delta(T)$. Analogous results are obtained for the distinguishing chromatic number, namely the least positive integer $n$ such that the function $f$ is also a proper vertex-coloring.


1980 ◽  
Vol 32 (3) ◽  
pp. 628-630 ◽  
Author(s):  
Aiden A. Bruen

In what follows, a theorem on blocking sets is generalized to higher dimensions. The result is then used to study maximal partial spreads of odd-dimensional projective spaces.Notation. The number of elements in a set X is denoted by |X|. Those elements in a set A which are not in the set Bare denoted by A — B. In a projective space Σ = PG(n, q) of dimension n over the field GF(q) of order q, ┌d(Ωd, Λd, etc.) will mean a subspace of dimension d. A hyperplane of Σ is a subspace of dimension n — 1, that is, of co-dimension one.A blocking set in a projective plane π is a subset S of the points of π such that each line of π contains at least one point in S and at least one point not in S. The following result is shown in [1], [2].


2018 ◽  
Vol 10 (01) ◽  
pp. 1850014
Author(s):  
Yingcai Sun ◽  
Min Chen ◽  
Dong Chen

A proper vertex coloring of [Formula: see text] is acyclic if [Formula: see text] contains no bicolored cycle. Namely, every cycle of [Formula: see text] must be colored with at least three colors. [Formula: see text] is acyclically [Formula: see text]-colorable if for a given list assignment [Formula: see text], there exists an acyclic coloring [Formula: see text] of [Formula: see text] such that [Formula: see text] for all [Formula: see text]. If [Formula: see text] is acyclically [Formula: see text]-colorable for any list assignment with [Formula: see text] for all [Formula: see text], then [Formula: see text] is acyclically [Formula: see text]-choosable. In this paper, we prove that planar graphs without intersecting [Formula: see text]-cycles are acyclically [Formula: see text]-choosable. This provides a sufficient condition for planar graphs to be acyclically 4-choosable and also strengthens a result in [M. Montassier, A. Raspaud and W. Wang, Acyclic 4-choosability of planar graphs without cycles of specific lengths, in Topics in Discrete Mathematics, Algorithms and Combinatorics, Vol. 26 (Springer, Berlin, 2006), pp. 473–491] which says that planar graphs without [Formula: see text]-, [Formula: see text]-cycles and intersecting 3-cycles are acyclically 4-choosable.


2012 ◽  
Vol 49 (2) ◽  
pp. 156-169 ◽  
Author(s):  
Marko Jakovac ◽  
Iztok Peterin

A b-coloring is a proper vertex coloring of a graph such that each color class contains a vertex that has a neighbor in all other color classes and the b-chromatic number is the largest integer φ(G) for which a graph has a b-coloring with φ(G) colors. We determine some upper and lower bounds for the b-chromatic number of the strong product G ⊠ H, the lexicographic product G[H] and the direct product G × H and give some exact values for products of paths, cycles, stars, and complete bipartite graphs. We also show that the b-chromatic number of Pn ⊠ H, Cn ⊠ H, Pn[H], Cn[H], and Km,n[H] can be determined for an arbitrary graph H, when integers m and n are large enough.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 393
Author(s):  
Franklin Thamil Selvi.M.S ◽  
Amutha A ◽  
Antony Mary A

Given a simple graph , a harmonious coloring of  is the proper vertex coloring such that each pair of colors seems to appears together on at most one edge. The harmonious chromatic number of , denoted by  is the minimal number of colors in a harmonious coloring of . In this paper we have determined the harmonious chromatic number of some classes of Circulant Networks.  


2018 ◽  
Vol 2 (1) ◽  
pp. 30 ◽  
Author(s):  
Nuris Hisan Nazula ◽  
S Slamin ◽  
D Dafik

The local antimagic labeling on a graph G with |V| vertices and |E| edges is defined to be an assignment f : E --&gt; {1, 2,..., |E|} so that the weights of any two adjacent vertices u and v are distinct, that is, w(u)̸  ̸= w(v) where w(u) = Σe∈<sub>E(u)</sub> f(e) and E(u) is the set of edges incident to u. Therefore, any local antimagic labeling induces a proper vertex coloring of G where the vertex u is assigned the color w(u). The local antimagic chromatic number, denoted by χla(G), is the minimum number of colors taken over all colorings induced by local antimagic labelings of G. In this paper, we present the local antimagic chromatic number of unicyclic graphs that is the graphs containing exactly one cycle such as kite and cycle with two neighbour pendants.


Sign in / Sign up

Export Citation Format

Share Document