On the b-chromatic number of some graph products

2012 ◽  
Vol 49 (2) ◽  
pp. 156-169 ◽  
Author(s):  
Marko Jakovac ◽  
Iztok Peterin

A b-coloring is a proper vertex coloring of a graph such that each color class contains a vertex that has a neighbor in all other color classes and the b-chromatic number is the largest integer φ(G) for which a graph has a b-coloring with φ(G) colors. We determine some upper and lower bounds for the b-chromatic number of the strong product G ⊠ H, the lexicographic product G[H] and the direct product G × H and give some exact values for products of paths, cycles, stars, and complete bipartite graphs. We also show that the b-chromatic number of Pn ⊠ H, Cn ⊠ H, Pn[H], Cn[H], and Km,n[H] can be determined for an arbitrary graph H, when integers m and n are large enough.

2020 ◽  
Vol 12 (02) ◽  
pp. 2050021
Author(s):  
Ghazale Ghazi ◽  
Freydoon Rahbarnia ◽  
Mostafa Tavakoli

This paper studies the 2-distance chromatic number of some graph product. A coloring of [Formula: see text] is 2-distance if any two vertices at distance at most two from each other get different colors. The minimum number of colors in the 2-distance coloring of [Formula: see text] is the 2-distance chromatic number and denoted by [Formula: see text]. In this paper, we obtain some upper and lower bounds for the 2-distance chromatic number of the rooted product, generalized rooted product, hierarchical product and we determine exact value for the 2-distance chromatic number of the lexicographic product.


2013 ◽  
Vol Vol. 15 no. 1 (Graph Theory) ◽  
Author(s):  
Anja Kohl

Graph Theory International audience A b-coloring of a graph G by k colors is a proper vertex coloring such that each color class contains a color-dominating vertex, that is, a vertex having neighbors in all other k-1 color classes. The b-chromatic number χb(G) is the maximum integer k for which G has a b-coloring by k colors. Let Cnr be the rth power of a cycle of order n. In 2003, Effantin and Kheddouci established the b-chromatic number χb(Cnr) for all values of n and r, except for 2r+3≤n≤3r. For the missing cases they presented the lower bound L:= min n-r-1,r+1+⌊ n-r-1 / 3⌋ and conjectured that χb(Cnr)=L. In this paper, we determine the exact value on χb(Cnr) for the missing cases. It turns out that χb(Cnr)>L for 2r+3≤n≤2r+3+r-6 / 4.


Author(s):  
Fairouz Beggas ◽  
Hamamache Kheddouci ◽  
Walid Marweni

In this paper, we introduce and study a new coloring problem of graphs called the double total dominator coloring. A double total dominator coloring of a graph [Formula: see text] with minimum degree at least 2 is a proper vertex coloring of [Formula: see text] such that each vertex has to dominate at least two color classes. The minimum number of colors among all double total dominator coloring of [Formula: see text] is called the double total dominator chromatic number, denoted by [Formula: see text]. Therefore, we establish the close relationship between the double total dominator chromatic number [Formula: see text] and the double total domination number [Formula: see text]. We prove the NP-completeness of the problem. We also examine the effects on [Formula: see text] when [Formula: see text] is modified by some operations. Finally, we discuss the [Formula: see text] number of square of trees by giving some bounds.


10.37236/947 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Mark E. Watkins ◽  
Xiangqian Zhou

The distinguishing number $\Delta(X)$ of a graph $X$ is the least positive integer $n$ for which there exists a function $f:V(X)\to\{0,1,2,\cdots,n-1\}$ such that no nonidentity element of $\hbox{Aut}(X)$ fixes (setwise) every inverse image $f^{-1}(k)$, $k\in\{0,1,2,\cdots,n-1\}$. All infinite, locally finite trees without pendant vertices are shown to be 2-distinguishable. A proof is indicated that extends 2-distinguishability to locally countable trees without pendant vertices. It is shown that every infinite, locally finite tree $T$ with finite distinguishing number contains a finite subtree $J$ such that $\Delta(J)=\Delta(T)$. Analogous results are obtained for the distinguishing chromatic number, namely the least positive integer $n$ such that the function $f$ is also a proper vertex-coloring.


2015 ◽  
Vol 9 (1) ◽  
pp. 39-58 ◽  
Author(s):  
S. Barik ◽  
R.B. Bapat ◽  
S. Pati

Graph products and their structural properties have been studied extensively by many researchers. We investigate the Laplacian eigenvalues and eigenvectors of the product graphs for the four standard products, namely, the Cartesian product, the direct product, the strong product and the lexicographic product. A complete characterization of Laplacian spectrum of the Cartesian product of two graphs has been done by Merris. We give an explicit complete characterization of the Laplacian spectrum of the lexicographic product of two graphs using the Laplacian spectra of the factors. For the other two products, we describe the complete spectrum of the product graphs in some particular cases. We supply some new results relating to the algebraic connectivity of the product graphs. We describe the characteristic sets for the Cartesian product and for the lexicographic product of two graphs. As an application we construct new classes of Laplacian integral graphs.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 393
Author(s):  
Franklin Thamil Selvi.M.S ◽  
Amutha A ◽  
Antony Mary A

Given a simple graph , a harmonious coloring of  is the proper vertex coloring such that each pair of colors seems to appears together on at most one edge. The harmonious chromatic number of , denoted by  is the minimal number of colors in a harmonious coloring of . In this paper we have determined the harmonious chromatic number of some classes of Circulant Networks.  


2018 ◽  
Vol 2 (1) ◽  
pp. 30 ◽  
Author(s):  
Nuris Hisan Nazula ◽  
S Slamin ◽  
D Dafik

The local antimagic labeling on a graph G with |V| vertices and |E| edges is defined to be an assignment f : E --&gt; {1, 2,..., |E|} so that the weights of any two adjacent vertices u and v are distinct, that is, w(u)̸  ̸= w(v) where w(u) = Σe∈<sub>E(u)</sub> f(e) and E(u) is the set of edges incident to u. Therefore, any local antimagic labeling induces a proper vertex coloring of G where the vertex u is assigned the color w(u). The local antimagic chromatic number, denoted by χla(G), is the minimum number of colors taken over all colorings induced by local antimagic labelings of G. In this paper, we present the local antimagic chromatic number of unicyclic graphs that is the graphs containing exactly one cycle such as kite and cycle with two neighbour pendants.


10.37236/2817 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Boštjan Frelih ◽  
Štefko Miklavič

A regular nonempty graph $\Gamma$ is called edge regular, whenever there exists a nonegative integer $\lambda_{\Gamma}$, such that any two adjacent vertices of $\Gamma$ have precisely $\lambda_{\Gamma}$ common neighbours. An edge regular graph $\Gamma$ with at least one pair of vertices at distance 2 is called amply regular, whenever there exists a nonegative integer $\mu_{\Gamma}$, such that any two vertices at distance 2 have precisely $\mu_{\Gamma}$ common neighbours. In this paper we classify edge regular graphs, which can be obtained as a strong product, or a lexicographic product, or a deleted lexicographic product, or a co-normal product of two graphs. As a corollary we determine which of these graphs are amply regular.


YMER Digital ◽  
2021 ◽  
Vol 20 (10) ◽  
pp. 62-72
Author(s):  
S Saraswathi ◽  
◽  
M Poobalaranjani ◽  

An exact 2-distance coloring of a graph 𝐺 is a coloring of vertices of 𝐺 such that any two vertices which are at distance exactly 2 receive distinct colors. An exact 2-distance chromatic number𝑒2(𝐺) of 𝐺 is the minimum 𝑘 for which 𝐺 admits an exact 2-distance coloring with 𝑘 colors. A 𝑏-coloring of 𝐺 by 𝑘 colors is a proper 𝑘-vertex coloring such that in each color class, there exists a vertex called a color dominating vertex which has a neighbor in every other color class. A vertex that has a 2-neighbor in all other color classes is called an exact 2-distance color dominating vertex (or an 𝑒2-cdv). Exact 2-distance 𝑏-coloring (or an 𝑒2𝑏-coloring) of 𝐺 is an exact 2-distance coloring such that each color class contains an 𝑒2- cdv. An exact 2-distance 𝑏-chromatic number (or an 𝑒2𝑏-number) 𝑒2𝑏(𝐺) of 𝐺 is the largest integer 𝑘 such that 𝐺 has an 𝑒2𝑏-coloring with 𝑘colors. If for each integer𝑘, 𝑒2(𝐺) ≤ 𝑘 ≤ 𝑒2𝑏(𝐺), 𝐺 has an 𝑒2𝑏-coloring by 𝑘 colors, then 𝐺 is said to be an exact 2-distance 𝑏- continuous graph. In this paper, the 𝑒2𝑏-number𝑒2𝑏(𝐻𝑛)of the helm graph 𝐻𝑛is obtained and 𝑒2𝑏-continuity of 𝐻𝑛is discussed.


2020 ◽  
Vol 20 (02) ◽  
pp. 2050007
Author(s):  
P. C. LISNA ◽  
M. S. SUNITHA

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by φ(G), is the largest integer k such that G has a b-coloring with k colors. The b-chromatic sum of a graph G(V, E), denoted by φ′(G) is defined as the minimum of sum of colors c(v) of v for all v ∈ V in a b-coloring of G using φ(G) colors. The Mycielskian or Mycielski, μ(H) of a graph H with vertex set {v1, v2,…, vn} is a graph G obtained from H by adding a set of n + 1 new vertices {u, u1, u2, …, un} joining u to each vertex ui(1 ≤ i ≤ n) and joining ui to each neighbour of vi in H. In this paper, the b-chromatic sum of Mycielskian of cycles, complete graphs and complete bipartite graphs are discussed. Also, an application of b-coloring in image processing is discussed here.


Sign in / Sign up

Export Citation Format

Share Document