scholarly journals Monochromatic Components in Edge-Coloured Graphs with Large Minimum Degree

10.37236/9039 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Hannah Guggiari ◽  
Alex Scott

For every $n\in\mathbb{N}$ and $k\geqslant2$, it is known that every $k$-edge-colouring of the complete graph on $n$ vertices contains a monochromatic connected component of order at least $\frac{n}{k-1}$. For $k\geqslant3$, it is known that the complete graph can be replaced by a graph $G$ with $\delta(G)\geqslant(1-\varepsilon_k)n$ for some constant $\varepsilon_k$. In this paper, we show that the maximum possible value of $\varepsilon_3$ is $\frac16$. This disproves a conjecture of Gyárfas and Sárközy.


Author(s):  
József Balogh ◽  
Alexandr Kostochka ◽  
Mikhail Lavrov ◽  
Xujun Liu

Abstract A graph G arrows a graph H if in every 2-edge-colouring of G there exists a monochromatic copy of H. Schelp had the idea that if the complete graph $K_n$ arrows a small graph H, then every ‘dense’ subgraph of $K_n$ also arrows H, and he outlined some problems in this direction. Our main result is in this spirit. We prove that for every sufficiently large n, if $n = 3t+r$ where $r \in \{0,1,2\}$ and G is an n-vertex graph with $\delta(G) \ge (3n-1)/4$ , then for every 2-edge-colouring of G, either there are cycles of every length $\{3, 4, 5, \dots, 2t+r\}$ of the same colour, or there are cycles of every even length $\{4, 6, 8, \dots, 2t+2\}$ of the samecolour. Our result is tight in the sense that no longer cycles (of length $>2t+r$ ) can be guaranteed and the minimum degree condition cannot be reduced. It also implies the conjecture of Schelp that for every sufficiently large n, every $(3t-1)$ -vertex graph G with minimum degree larger than $3|V(G)|/4$ arrows the path $P_{2n}$ with 2n vertices. Moreover, it implies for sufficiently large n the conjecture by Benevides, Łuczak, Scott, Skokan and White that for $n=3t+r$ where $r \in \{0,1,2\}$ and every n-vertex graph G with $\delta(G) \ge 3n/4$ , in each 2-edge-colouring of G there exists a monochromatic cycle of length at least $2t+r$ .



10.37236/7049 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
András Gyárfás ◽  
Gábor Sárközy

It is well-known that in every $k$-coloring of the edges of the complete graph $K_n$ there is a monochromatic connected component of order at least ${n\over k-1}$. In this paper we study an extension of this problem by replacing complete graphs by graphs of large minimum degree. For $k=2$ the authors proved that $\delta(G)\ge{3n\over 4}$ ensures a monochromatic connected component with at least $\delta(G)+1$ vertices in every $2$-coloring of the edges of a graph $G$ with $n$ vertices. This result is sharp, thus for $k=2$ we really need a complete graph to guarantee that one of the colors has a monochromatic connected spanning subgraph. Our main result here is  that for larger values of $k$ the situation is different, graphs of minimum degree $(1-\epsilon_k)n$ can replace complete graphs and still there is a monochromatic connected component of order at least ${n\over k-1}$, in fact $$\delta(G)\ge \left(1 - \frac{1}{1000(k-1)^9}\right)n$$ suffices.Our second result is an improvement of this bound for $k=3$. If the edges of $G$ with  $\delta(G)\geq {9n\over 10}$ are $3$-colored, then there is a monochromatic component of order at least ${n\over 2}$. We conjecture that this can be improved to ${7n\over 9}$ and for general $k$ we conjecture the following: if $k\geq 3$ and  $G$ is a graph of order $n$ such that $\delta(G)\geq \left( 1 - \frac{k-1}{k^2}\right)n$, then in any $k$-coloring of the edges of $G$ there is a monochromatic connected component of order at least ${n\over k-1}$.



10.37236/499 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Ingo Schiermeyer ◽  
Anders Yeo

For a graph $G$, let $\gamma(G)$ denote the domination number of $G$ and let $\delta(G)$ denote the minimum degree among the vertices of $G$. A vertex $x$ is called a bad-cut-vertex of $G$ if $G-x$ contains a component, $C_x$, which is an induced $4$-cycle and $x$ is adjacent to at least one but at most three vertices on $C_x$. A cycle $C$ is called a special-cycle if $C$ is a $5$-cycle in $G$ such that if $u$ and $v$ are consecutive vertices on $C$, then at least one of $u$ and $v$ has degree $2$ in $G$. We let ${\rm bc}(G)$ denote the number of bad-cut-vertices in $G$, and ${\rm sc}(G)$ the maximum number of vertex disjoint special-cycles in $G$ that contain no bad-cut-vertices. We say that a graph is $(C_4,C_5)$-free if it has no induced $4$-cycle or $5$-cycle. Bruce Reed [Paths, stars and the number three. Combin. Probab. Comput. 5 (1996), 277–295] showed that if $G$ is a graph of order $n$ with $\delta(G) \ge 3$, then $\gamma(G) \le 3n/8$. In this paper, we relax the minimum degree condition from three to two. Let $G$ be a connected graph of order $n \ge 14$ with $\delta(G) \ge 2$. As an application of Reed's result, we show that $\gamma(G) \le \frac{1}{8} ( 3n + {\rm sc}(G) + {\rm bc}(G))$. As a consequence of this result, we have that (i) $\gamma(G) \le 2n/5$; (ii) if $G$ contains no special-cycle and no bad-cut-vertex, then $\gamma(G) \le 3n/8$; (iii) if $G$ is $(C_4,C_5)$-free, then $\gamma(G) \le 3n/8$; (iv) if $G$ is $2$-connected and $d_G(u) + d_G(v) \ge 5$ for every two adjacent vertices $u$ and $v$, then $\gamma(G) \le 3n/8$. All bounds are sharp.



2019 ◽  
Vol 29 (1) ◽  
pp. 113-127
Author(s):  
Rajko Nenadov ◽  
Nemanja Škorić

AbstractGiven graphs G and H, a family of vertex-disjoint copies of H in G is called an H-tiling. Conlon, Gowers, Samotij and Schacht showed that for a given graph H and a constant γ>0, there exists C>0 such that if $p \ge C{n^{ - 1/{m_2}(H)}}$ , then asymptotically almost surely every spanning subgraph G of the random graph 𝒢(n, p) with minimum degree at least $\delta (G) \ge (1 - \frac{1}{{{\chi _{{\rm{cr}}}}(H)}} + \gamma )np$ contains an H-tiling that covers all but at most γn vertices. Here, χcr(H) denotes the critical chromatic number, a parameter introduced by Komlós, and m2(H) is the 2-density of H. We show that this theorem can be bootstrapped to obtain an H-tiling covering all but at most $\gamma {(C/p)^{{m_2}(H)}}$ vertices, which is strictly smaller when $p \ge C{n^{ - 1/{m_2}(H)}}$ . In the case where H = K3, this answers the question of Balogh, Lee and Samotij. Furthermore, for an arbitrary graph H we give an upper bound on p for which some leftover is unavoidable and a bound on the size of a largest H -tiling for p below this value.



2009 ◽  
Vol 18 (1-2) ◽  
pp. 247-258 ◽  
Author(s):  
PO-SHEN LOH ◽  
BENNY SUDAKOV

For two graphs S and T, the constrained Ramsey number f(S, T) is the minimum n such that every edge colouring of the complete graph on n vertices (with any number of colours) has a monochromatic subgraph isomorphic to S or a rainbow subgraph isomorphic to T. Here, a subgraph is said to be rainbow if all of its edges have different colours. It is an immediate consequence of the Erdős–Rado Canonical Ramsey Theorem that f(S, T) exists if and only if S is a star or T is acyclic. Much work has been done to determine the rate of growth of f(S, T) for various types of parameters. When S and T are both trees having s and t edges respectively, Jamison, Jiang and Ling showed that f(S, T) ≤ O(st2) and conjectured that it is always at most O(st). They also mentioned that one of the most interesting open special cases is when T is a path. In this paper, we study this case and show that f(S, Pt) = O(st log t), which differs only by a logarithmic factor from the conjecture. This substantially improves the previous bounds for most values of s and t.



COMBINATORICA ◽  
2014 ◽  
Vol 34 (3) ◽  
pp. 279-298 ◽  
Author(s):  
Matt Devos ◽  
Zdeněk Dvořák ◽  
Jacob Fox ◽  
Jessica McDonald ◽  
Bojan Mohar ◽  
...  


10.37236/3744 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Jakub Przybyło

Let $c:E\to\{1,\ldots,k\}$ be an edge colouring of a connected graph $G=(V,E)$. Each vertex $v$ is endowed with a naturally defined pallet under $c$, understood as the multiset of colours incident with $v$. If $\delta(G)\geq 2$, we obviously (for $k$ large enough) may colour the edges of $G$ so that adjacent vertices are distinguished by their pallets of colours. Suppose then that our coloured graph is examined by a person who is unable to name colours, but perceives if two object placed next to each other are coloured differently. Can we colour $G$ so that this individual can distinguish colour pallets of adjacent vertices? It is proved that if $\delta(G)$ is large enough, then it is possible using just colours 1, 2 and 3. This result is sharp and improves all earlier ones. It also constitutes a strengthening of a result by Addario-Berry, Aldred, Dalal and Reed (2005).



10.37236/1174 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
József Balogh ◽  
András Pluhár

In this note we investigate a special form of degree games defined by D. Hefetz, M. Krivelevich, M. Stojaković and T. Szabó. Usually the board of a graph game is the edge set of $K_n$, the complete graph on $n$ vertices. Maker and Breaker alternately claim an edge, and Maker wins if his edges form a subgraph with prescribed properties; here a certain minimum degree. In the special form the board is no longer the whole edge set of $K_n$, Maker first selects as few edges of $K_n$ as possible in order to win, and our goal is to compute the necessary size of that board. Solving a question of Hefetz et al., we show, using the discharging method, that the sharp bound is around $10n/7$ for the positive minimum degree game.



10.37236/257 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Veselin Jungić ◽  
Tomáš Kaiser ◽  
Daniel Král'

We study the mixed Ramsey number $maxR(n,{K_m},{K_r})$, defined as the maximum number of colours in an edge-colouring of the complete graph $K_n$, such that $K_n$ has no monochromatic complete subgraph on $m$ vertices and no rainbow complete subgraph on $r$ vertices. Improving an upper bound of Axenovich and Iverson, we show that $maxR(n,{K_m},{K_4}) \leq n^{3/2}\sqrt{2m}$ for all $m\geq 3$. Further, we discuss a possible way to improve their lower bound on $maxR(n,{K_4},{K_4})$ based on incidence graphs of finite projective planes.



10.37236/8339 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Yahav Alon ◽  
Michael Krivelevich

We show that the probability that a random graph $G\sim G(n,p)$ contains no Hamilton cycle is $(1+o(1))Pr(\delta (G) < 2)$ for all values of $p = p(n)$. We also prove an analogous result for perfect matchings.



Sign in / Sign up

Export Citation Format

Share Document