scholarly journals The Diameter of Almost Eulerian Digraphs

10.37236/429 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Peter Dankelmann ◽  
L. Volkmann

Soares [J. Graph Theory 1992] showed that the well known upper bound $\frac{3}{\delta+1}n+O(1)$ on the diameter of undirected graphs of order $n$ and minimum degree $\delta$ also holds for digraphs, provided they are eulerian. In this paper we investigate if similar bounds can be given for digraphs that are, in some sense, close to being eulerian. In particular we show that a directed graph of order $n$ and minimum degree $\delta$ whose arc set can be partitioned into $s$ trails, where $s\leq \delta-2$, has diameter at most $3 ( \delta+1 - \frac{s}{3})^{-1}n+O(1)$. If $s$ also divides $\delta-2$, then we show the diameter to be at most $3(\delta+1 - \frac{(\delta-2)s}{3(\delta-2)+s} )^{-1}n+O(1)$. The latter bound is sharp, apart from an additive constant. As a corollary we obtain the sharp upper bound $3( \delta+1 - \frac{\delta-2}{3\delta-5})^{-1} n + O(1)$ on the diameter of digraphs that have an eulerian trail.

2019 ◽  
Vol 28 (12) ◽  
pp. 1950076
Author(s):  
Thomas Fleming ◽  
Joel Foisy

A directed graph [Formula: see text] is intrinsically linked if every embedding of that graph contains a nonsplit link [Formula: see text], where each component of [Formula: see text] is a consistently oriented cycle in [Formula: see text]. A tournament is a directed graph where each pair of vertices is connected by exactly one directed edge. We consider intrinsic linking and knotting in tournaments, and study the minimum number of vertices required for a tournament to have various intrinsic linking or knotting properties. We produce the following bounds: intrinsically linked ([Formula: see text]), intrinsically knotted ([Formula: see text]), intrinsically 3-linked ([Formula: see text]), intrinsically 4-linked ([Formula: see text]), intrinsically 5-linked ([Formula: see text]), intrinsically [Formula: see text]-linked ([Formula: see text]), intrinsically linked with knotted components ([Formula: see text]), and the disjoint linking property ([Formula: see text]). We also introduce the consistency gap, which measures the difference in the order of a graph required for intrinsic [Formula: see text]-linking in tournaments versus undirected graphs. We conjecture the consistency gap to be nondecreasing in [Formula: see text], and provide an upper bound at each [Formula: see text].


2019 ◽  
Vol 29 (1) ◽  
pp. 128-136 ◽  
Author(s):  
Bo Ning ◽  
Xing Peng

AbstractThe famous Erdős–Gallai theorem on the Turán number of paths states that every graph with n vertices and m edges contains a path with at least (2m)/n edges. In this note, we first establish a simple but novel extension of the Erdős–Gallai theorem by proving that every graph G contains a path with at least $${{(s + 1){N_{s + 1}}(G)} \over {{N_s}(G)}} + s - 1$$ edges, where Nj(G) denotes the number of j-cliques in G for 1≤ j ≤ ω(G). We also construct a family of graphs which shows our extension improves the estimate given by the Erdős–Gallai theorem. Among applications, we show, for example, that the main results of [20], which are on the maximum possible number of s-cliques in an n-vertex graph without a path with ℓ vertices (and without cycles of length at least c), can be easily deduced from this extension. Indeed, to prove these results, Luo [20] generalized a classical theorem of Kopylov and established a tight upper bound on the number of s-cliques in an n-vertex 2-connected graph with circumference less than c. We prove a similar result for an n-vertex 2-connected graph with circumference less than c and large minimum degree. We conclude this paper with an application of our results to a problem from spectral extremal graph theory on consecutive lengths of cycles in graphs.


2021 ◽  
Vol vol. 23 no. 1 (Graph Theory) ◽  
Author(s):  
Peter Dankelmann ◽  
Alex Alochukwu

Let $G$ be a connected graph of order $n$.The Wiener index $W(G)$ of $G$ is the sum of the distances between all unordered pairs of vertices of $G$. In this paper we show that the well-known upper bound $\big( \frac{n}{\delta+1}+2\big) {n \choose 2}$ on the Wiener index of a graph of order $n$ and minimum degree $\delta$ [M. Kouider, P. Winkler, Mean distance and minimum degree. J. Graph Theory 25 no. 1 (1997)] can be improved significantly if the graph contains also a vertex of large degree. Specifically, we give the asymptotically sharp bound $W(G) \leq {n-\Delta+\delta \choose 2} \frac{n+2\Delta}{\delta+1}+ 2n(n-1)$ on the Wiener index of a graph $G$ of order $n$, minimum degree $\delta$ and maximum degree $\Delta$. We prove a similar result for triangle-free graphs, and we determine a bound on the Wiener index of $C_4$-free graphs of given order, minimum and maximum degree and show that it is, in some sense, best possible.


10.37236/5481 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Jakub Przybyło

The Total Colouring Conjecture suggests that $\Delta+3$ colours ought to suffice in order to provide a proper total colouring of every graph $G$ with maximum degree $\Delta$. Thus far this has been confirmed up to an additive constant factor, and the same holds even if one additionally requires every pair of neighbours in $G$ to differ with respect to the sets of their incident colours, so called pallets. Within this paper we conjecture that an upper bound of the form $\Delta+C$, for a constant $C>0$ still remains valid even after extending the distinction requirement to pallets associated with vertices at distance at most $r$, if only $G$ has minimum degree $\delta$ larger than a constant dependent on $r$. We prove that such assumption on $\delta$ is then unavoidable and exploit the probabilistic method in order to provide two supporting results for the conjecture. Namely, we prove the upper bound $(1+o(1))\Delta$ for every $r$, and show that for any fixed $\epsilon\in(0,1]$ and $r$, the conjecture holds if $\delta\geq \varepsilon\Delta$, i.e., in particular for regular graphs.


10.37236/983 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

A set $S$ of vertices in a graph $G$ is a total dominating set of $G$ if every vertex of $G$ is adjacent to some vertex in $S$. The minimum cardinality of a total dominating set of $G$ is the total domination number of $G$. Let $G$ be a connected graph of order $n$ with minimum degree at least two and with maximum degree at least three. We define a vertex as large if it has degree more than $2$ and we let ${\cal L}$ be the set of all large vertices of $G$. Let $P$ be any component of $G - {\cal L}$; it is a path. If $|P| \equiv 0 \, ( {\rm mod} \, 4)$ and either the two ends of $P$ are adjacent in $G$ to the same large vertex or the two ends of $P$ are adjacent to different, but adjacent, large vertices in $G$, we call $P$ a $0$-path. If $|P| \ge 5$ and $|P| \equiv 1 \, ( {\rm mod} \, 4)$ with the two ends of $P$ adjacent in $G$ to the same large vertex, we call $P$ a $1$-path. If $|P| \equiv 3 \, ( {\rm mod} \, 4)$, we call $P$ a $3$-path. For $i \in \{0,1,3\}$, we denote the number of $i$-paths in $G$ by $p_i$. We show that the total domination number of $G$ is at most $(n + p_0 + p_1 + p_3)/2$. This result generalizes a result shown in several manuscripts (see, for example, J. Graph Theory 46 (2004), 207–210) which states that if $G$ is a graph of order $n$ with minimum degree at least three, then the total domination of $G$ is at most $n/2$. It also generalizes a result by Lam and Wei stating that if $G$ is a graph of order $n$ with minimum degree at least two and with no degree-$2$ vertex adjacent to two other degree-$2$ vertices, then the total domination of $G$ is at most $n/2$.


2014 ◽  
Vol Vol. 16 no. 1 (Graph Theory) ◽  
Author(s):  
Simon Mukwembi

Graph Theory International audience Let G be a finite connected graph. We give an asymptotically tight upper bound on the size of G in terms of order, radius and minimum degree. Our result is a strengthening of an old classical theorem of Vizing (1967) if minimum degree is prescribed.


10.37236/6531 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Michitaka Furuya ◽  
Naoki Matsumoto

In [J. Graph Theory 13 (1989) 749—762], McCuaig and Shepherd gave an upper bound of the domination number for connected graphs with minimum degree at least two. In this paper, we propose a simple strategy which, together with the McCuaig-Shepherd theorem, gives a sharp upper bound of the domination number via the number of leaves. We also apply the same strategy to other domination-like invariants, and find a relationship between such invariants and the number of leaves.


10.37236/328 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
János Barát ◽  
Miloš Stojaković

We analyze the duration of the unbiased Avoider-Enforcer game for three basic positional games. All the games are played on the edges of the complete graph on $n$ vertices, and Avoider's goal is to keep his graph outerplanar, diamond-free and $k$-degenerate, respectively. It is clear that all three games are Enforcer's wins, and our main interest lies in determining the largest number of moves Avoider can play before losing. Extremal graph theory offers a general upper bound for the number of Avoider's moves. As it turns out, for all three games we manage to obtain a lower bound that is just an additive constant away from that upper bound. In particular, we exhibit a strategy for Avoider to keep his graph outerplanar for at least $2n-8$ moves, being just $6$ short of the maximum possible. A diamond-free graph can have at most $d(n)=\lceil\frac{3n-4}{2}\rceil$ edges, and we prove that Avoider can play for at least $d(n)-3$ moves. Finally, if $k$ is small compared to $n$, we show that Avoider can keep his graph $k$-degenerate for as many as $e(n)$ moves, where $e(n)$ is the maximum number of edges a $k$-degenerate graph can have.


2015 ◽  
Vol 24 (6) ◽  
pp. 873-928 ◽  
Author(s):  
ANDREW TREGLOWN

We say that a (di)graph G has a perfect H-packing if there exists a set of vertex-disjoint copies of H which cover all the vertices in G. The seminal Hajnal–Szemerédi theorem characterizes the minimum degree that ensures a graph G contains a perfect Kr-packing. In this paper we prove the following analogue for directed graphs: Suppose that T is a tournament on r vertices and G is a digraph of sufficiently large order n where r divides n. If G has minimum in- and outdegree at least (1−1/r)n then G contains a perfect T-packing.In the case when T is a cyclic triangle, this result verifies a recent conjecture of Czygrinow, Kierstead and Molla [4] (for large digraphs). Furthermore, in the case when T is transitive we conjecture that it suffices for every vertex in G to have sufficiently large indegree or outdegree. We prove this conjecture for transitive triangles and asymptotically for all r ⩾ 3. Our approach makes use of a result of Keevash and Mycroft [10] concerning almost perfect matchings in hypergraphs as well as the Directed Graph Removal Lemma [1, 6].


Sign in / Sign up

Export Citation Format

Share Document