scholarly journals On size, radius and minimum degree

2014 ◽  
Vol Vol. 16 no. 1 (Graph Theory) ◽  
Author(s):  
Simon Mukwembi

Graph Theory International audience Let G be a finite connected graph. We give an asymptotically tight upper bound on the size of G in terms of order, radius and minimum degree. Our result is a strengthening of an old classical theorem of Vizing (1967) if minimum degree is prescribed.

2019 ◽  
Vol 29 (1) ◽  
pp. 128-136 ◽  
Author(s):  
Bo Ning ◽  
Xing Peng

AbstractThe famous Erdős–Gallai theorem on the Turán number of paths states that every graph with n vertices and m edges contains a path with at least (2m)/n edges. In this note, we first establish a simple but novel extension of the Erdős–Gallai theorem by proving that every graph G contains a path with at least $${{(s + 1){N_{s + 1}}(G)} \over {{N_s}(G)}} + s - 1$$ edges, where Nj(G) denotes the number of j-cliques in G for 1≤ j ≤ ω(G). We also construct a family of graphs which shows our extension improves the estimate given by the Erdős–Gallai theorem. Among applications, we show, for example, that the main results of [20], which are on the maximum possible number of s-cliques in an n-vertex graph without a path with ℓ vertices (and without cycles of length at least c), can be easily deduced from this extension. Indeed, to prove these results, Luo [20] generalized a classical theorem of Kopylov and established a tight upper bound on the number of s-cliques in an n-vertex 2-connected graph with circumference less than c. We prove a similar result for an n-vertex 2-connected graph with circumference less than c and large minimum degree. We conclude this paper with an application of our results to a problem from spectral extremal graph theory on consecutive lengths of cycles in graphs.


2013 ◽  
Vol Vol. 15 no. 1 (Graph Theory) ◽  
Author(s):  
Ben Seamone ◽  
Brett Stevens

Graph Theory International audience Karonski, Luczak, and Thomason (2004) conjecture that, for any connected graph G on at least three vertices, there exists an edge weighting from 1, 2, 3 such that adjacent vertices receive different sums of incident edge weights. Bartnicki, Grytczuk, and Niwcyk (2009) make a stronger conjecture, that each edge's weight may be chosen from an arbitrary list of size 3 rather than 1, 2, 3. We examine a variation of these conjectures, where each vertex is coloured with a sequence of edge weights. Such a colouring relies on an ordering of E(G), and so two variations arise - one where we may choose any ordering of E(G) and one where the ordering is fixed. In the former case, we bound the list size required for any graph. In the latter, we obtain a bound on list sizes for graphs with sufficiently large minimum degree. We also extend our methods to a list variation of irregularity strength, where each vertex receives a distinct sequence of edge weights.


2021 ◽  
Vol vol. 23 no. 1 (Graph Theory) ◽  
Author(s):  
Peter Dankelmann ◽  
Alex Alochukwu

Let $G$ be a connected graph of order $n$.The Wiener index $W(G)$ of $G$ is the sum of the distances between all unordered pairs of vertices of $G$. In this paper we show that the well-known upper bound $\big( \frac{n}{\delta+1}+2\big) {n \choose 2}$ on the Wiener index of a graph of order $n$ and minimum degree $\delta$ [M. Kouider, P. Winkler, Mean distance and minimum degree. J. Graph Theory 25 no. 1 (1997)] can be improved significantly if the graph contains also a vertex of large degree. Specifically, we give the asymptotically sharp bound $W(G) \leq {n-\Delta+\delta \choose 2} \frac{n+2\Delta}{\delta+1}+ 2n(n-1)$ on the Wiener index of a graph $G$ of order $n$, minimum degree $\delta$ and maximum degree $\Delta$. We prove a similar result for triangle-free graphs, and we determine a bound on the Wiener index of $C_4$-free graphs of given order, minimum and maximum degree and show that it is, in some sense, best possible.


10.37236/429 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Peter Dankelmann ◽  
L. Volkmann

Soares [J. Graph Theory 1992] showed that the well known upper bound $\frac{3}{\delta+1}n+O(1)$ on the diameter of undirected graphs of order $n$ and minimum degree $\delta$ also holds for digraphs, provided they are eulerian. In this paper we investigate if similar bounds can be given for digraphs that are, in some sense, close to being eulerian. In particular we show that a directed graph of order $n$ and minimum degree $\delta$ whose arc set can be partitioned into $s$ trails, where $s\leq \delta-2$, has diameter at most $3 ( \delta+1 - \frac{s}{3})^{-1}n+O(1)$. If $s$ also divides $\delta-2$, then we show the diameter to be at most $3(\delta+1 - \frac{(\delta-2)s}{3(\delta-2)+s} )^{-1}n+O(1)$. The latter bound is sharp, apart from an additive constant. As a corollary we obtain the sharp upper bound $3( \delta+1 - \frac{\delta-2}{3\delta-5})^{-1} n + O(1)$ on the diameter of digraphs that have an eulerian trail.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


2014 ◽  
Vol Vol. 16 no. 3 ◽  
Author(s):  
Frederic Havet ◽  
Nagarajan Paramaguru ◽  
Rathinaswamy Sampathkumar

International audience For a connected graph G of order |V(G)| ≥3 and a k-labelling c : E(G) →{1,2,…,k} of the edges of G, the code of a vertex v of G is the ordered k-tuple (ℓ1,ℓ2,…,ℓk), where ℓi is the number of edges incident with v that are labelled i. The k-labelling c is detectable if every two adjacent vertices of G have distinct codes. The minimum positive integer k for which G has a detectable k-labelling is the detection number det(G) of G. In this paper, we show that it is NP-complete to decide if the detection number of a cubic graph is 2. We also show that the detection number of every bipartite graph of minimum degree at least 3 is at most 2. Finally, we give some sufficient condition for a cubic graph to have detection number 3.


2012 ◽  
Vol 87 (2) ◽  
pp. 255-271 ◽  
Author(s):  
S. MUKWEMBI ◽  
S. MUNYIRA

AbstractLet G be a finite connected graph of order n, minimum degree δ and diameter d. The degree distance D′(G) of G is defined as ∑ {u,v}⊆V (G)(deg u+deg v) d(u,v), where deg w is the degree of vertex w and d(u,v) denotes the distance between u and v. In this paper, we find an asymptotically sharp upper bound on the degree distance in terms of order, minimum degree and diameter. In particular, we prove that \[ D^\prime (G)\le \frac {1}{4}\,dn\biggl (n-\frac {d}{3}(\delta +1)\biggr )^2+O(n^3). \] As a corollary, we obtain the bound D′ (G)≤n4 /(9(δ+1) )+O(n3) for a graph G of order n and minimum degree δ. This result, apart from improving on a result of Dankelmann et al. [‘On the degree distance of a graph’, Discrete Appl. Math.157 (2009), 2773–2777] for graphs of given order and minimum degree, completely settles a conjecture of Tomescu [‘Some extremal properties of the degree distance of a graph’, Discrete Appl. Math.98(1999), 159–163].


10.37236/983 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

A set $S$ of vertices in a graph $G$ is a total dominating set of $G$ if every vertex of $G$ is adjacent to some vertex in $S$. The minimum cardinality of a total dominating set of $G$ is the total domination number of $G$. Let $G$ be a connected graph of order $n$ with minimum degree at least two and with maximum degree at least three. We define a vertex as large if it has degree more than $2$ and we let ${\cal L}$ be the set of all large vertices of $G$. Let $P$ be any component of $G - {\cal L}$; it is a path. If $|P| \equiv 0 \, ( {\rm mod} \, 4)$ and either the two ends of $P$ are adjacent in $G$ to the same large vertex or the two ends of $P$ are adjacent to different, but adjacent, large vertices in $G$, we call $P$ a $0$-path. If $|P| \ge 5$ and $|P| \equiv 1 \, ( {\rm mod} \, 4)$ with the two ends of $P$ adjacent in $G$ to the same large vertex, we call $P$ a $1$-path. If $|P| \equiv 3 \, ( {\rm mod} \, 4)$, we call $P$ a $3$-path. For $i \in \{0,1,3\}$, we denote the number of $i$-paths in $G$ by $p_i$. We show that the total domination number of $G$ is at most $(n + p_0 + p_1 + p_3)/2$. This result generalizes a result shown in several manuscripts (see, for example, J. Graph Theory 46 (2004), 207–210) which states that if $G$ is a graph of order $n$ with minimum degree at least three, then the total domination of $G$ is at most $n/2$. It also generalizes a result by Lam and Wei stating that if $G$ is a graph of order $n$ with minimum degree at least two and with no degree-$2$ vertex adjacent to two other degree-$2$ vertices, then the total domination of $G$ is at most $n/2$.


2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Paul D. Manuel ◽  
Bharati Rajan ◽  
Indra Rajasingh ◽  
P. Vasanthi Beulah

Graph Theory International audience We draw the r-dimensional butterfly network with 1 / 44r+O(r2r) crossings which improves the previous estimate given by Cimikowski (1996). We also give a lower bound which matches the upper bound obtained in this paper.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Louis DeBiasio ◽  
Safi Faizullah ◽  
Imdadullah Khan

Graph Theory International audience A classic theorem of Dirac from 1952 states that every graph with minimum degree at least n=2 contains a Hamiltonian cycle. In 1963, P´osa conjectured that every graph with minimum degree at least 2n=3 contains the square of a Hamiltonian cycle. In 1960, Ore relaxed the degree condition in the Dirac’s theorem by proving that every graph with deg(u) + deg(v) ≥ n for every uv =2 E(G) contains a Hamiltonian cycle. Recently, Chˆau proved an Ore-type version of P´osa’s conjecture for graphs on n ≥ n0 vertices using the regularity–blow-up method; consequently the n0 is very large (involving a tower function). Here we present another proof that avoids the use of the regularity lemma. Aside from the fact that our proof holds for much smaller n0, we believe that our method of proof will be of independent interest.


Sign in / Sign up

Export Citation Format

Share Document