scholarly journals Wiener index in graphs with given minimum degree and maximum degree

2021 ◽  
Vol vol. 23 no. 1 (Graph Theory) ◽  
Author(s):  
Peter Dankelmann ◽  
Alex Alochukwu

Let $G$ be a connected graph of order $n$.The Wiener index $W(G)$ of $G$ is the sum of the distances between all unordered pairs of vertices of $G$. In this paper we show that the well-known upper bound $\big( \frac{n}{\delta+1}+2\big) {n \choose 2}$ on the Wiener index of a graph of order $n$ and minimum degree $\delta$ [M. Kouider, P. Winkler, Mean distance and minimum degree. J. Graph Theory 25 no. 1 (1997)] can be improved significantly if the graph contains also a vertex of large degree. Specifically, we give the asymptotically sharp bound $W(G) \leq {n-\Delta+\delta \choose 2} \frac{n+2\Delta}{\delta+1}+ 2n(n-1)$ on the Wiener index of a graph $G$ of order $n$, minimum degree $\delta$ and maximum degree $\Delta$. We prove a similar result for triangle-free graphs, and we determine a bound on the Wiener index of $C_4$-free graphs of given order, minimum and maximum degree and show that it is, in some sense, best possible.

2019 ◽  
Vol 29 (1) ◽  
pp. 128-136 ◽  
Author(s):  
Bo Ning ◽  
Xing Peng

AbstractThe famous Erdős–Gallai theorem on the Turán number of paths states that every graph with n vertices and m edges contains a path with at least (2m)/n edges. In this note, we first establish a simple but novel extension of the Erdős–Gallai theorem by proving that every graph G contains a path with at least $${{(s + 1){N_{s + 1}}(G)} \over {{N_s}(G)}} + s - 1$$ edges, where Nj(G) denotes the number of j-cliques in G for 1≤ j ≤ ω(G). We also construct a family of graphs which shows our extension improves the estimate given by the Erdős–Gallai theorem. Among applications, we show, for example, that the main results of [20], which are on the maximum possible number of s-cliques in an n-vertex graph without a path with ℓ vertices (and without cycles of length at least c), can be easily deduced from this extension. Indeed, to prove these results, Luo [20] generalized a classical theorem of Kopylov and established a tight upper bound on the number of s-cliques in an n-vertex 2-connected graph with circumference less than c. We prove a similar result for an n-vertex 2-connected graph with circumference less than c and large minimum degree. We conclude this paper with an application of our results to a problem from spectral extremal graph theory on consecutive lengths of cycles in graphs.


10.37236/983 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

A set $S$ of vertices in a graph $G$ is a total dominating set of $G$ if every vertex of $G$ is adjacent to some vertex in $S$. The minimum cardinality of a total dominating set of $G$ is the total domination number of $G$. Let $G$ be a connected graph of order $n$ with minimum degree at least two and with maximum degree at least three. We define a vertex as large if it has degree more than $2$ and we let ${\cal L}$ be the set of all large vertices of $G$. Let $P$ be any component of $G - {\cal L}$; it is a path. If $|P| \equiv 0 \, ( {\rm mod} \, 4)$ and either the two ends of $P$ are adjacent in $G$ to the same large vertex or the two ends of $P$ are adjacent to different, but adjacent, large vertices in $G$, we call $P$ a $0$-path. If $|P| \ge 5$ and $|P| \equiv 1 \, ( {\rm mod} \, 4)$ with the two ends of $P$ adjacent in $G$ to the same large vertex, we call $P$ a $1$-path. If $|P| \equiv 3 \, ( {\rm mod} \, 4)$, we call $P$ a $3$-path. For $i \in \{0,1,3\}$, we denote the number of $i$-paths in $G$ by $p_i$. We show that the total domination number of $G$ is at most $(n + p_0 + p_1 + p_3)/2$. This result generalizes a result shown in several manuscripts (see, for example, J. Graph Theory 46 (2004), 207–210) which states that if $G$ is a graph of order $n$ with minimum degree at least three, then the total domination of $G$ is at most $n/2$. It also generalizes a result by Lam and Wei stating that if $G$ is a graph of order $n$ with minimum degree at least two and with no degree-$2$ vertex adjacent to two other degree-$2$ vertices, then the total domination of $G$ is at most $n/2$.


2014 ◽  
Vol Vol. 16 no. 1 (Graph Theory) ◽  
Author(s):  
Simon Mukwembi

Graph Theory International audience Let G be a finite connected graph. We give an asymptotically tight upper bound on the size of G in terms of order, radius and minimum degree. Our result is a strengthening of an old classical theorem of Vizing (1967) if minimum degree is prescribed.


10.37236/429 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Peter Dankelmann ◽  
L. Volkmann

Soares [J. Graph Theory 1992] showed that the well known upper bound $\frac{3}{\delta+1}n+O(1)$ on the diameter of undirected graphs of order $n$ and minimum degree $\delta$ also holds for digraphs, provided they are eulerian. In this paper we investigate if similar bounds can be given for digraphs that are, in some sense, close to being eulerian. In particular we show that a directed graph of order $n$ and minimum degree $\delta$ whose arc set can be partitioned into $s$ trails, where $s\leq \delta-2$, has diameter at most $3 ( \delta+1 - \frac{s}{3})^{-1}n+O(1)$. If $s$ also divides $\delta-2$, then we show the diameter to be at most $3(\delta+1 - \frac{(\delta-2)s}{3(\delta-2)+s} )^{-1}n+O(1)$. The latter bound is sharp, apart from an additive constant. As a corollary we obtain the sharp upper bound $3( \delta+1 - \frac{\delta-2}{3\delta-5})^{-1} n + O(1)$ on the diameter of digraphs that have an eulerian trail.


10.37236/5173 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Jakub Przybyło

A locally irregular graph is a graph whose adjacent vertices have distinct degrees. We say that a graph G can be decomposed into k locally irregular subgraphs if its edge set may be partitioned into k subsets each of which induces a locally irregular subgraph in G. It has been conjectured that apart from the family of exceptions which admit no such decompositions, i.e., odd paths, odd cycles and a special class of graphs of maximum degree 3, every connected graph can be decomposed into 3 locally irregular subgraphs. Using a combination of a probabilistic approach and some known theorems on degree constrained subgraphs of a given graph, we prove this to hold for graphs of minimum degree at least $10^{10}$. This problem is strongly related to edge colourings distinguishing neighbours by the pallets of their incident colours and to the 1-2-3 Conjecture. In particular, the contribution of this paper constitutes a strengthening of a result of Addario-Berry, Aldred, Dalal and Reed [J. Combin. Theory Ser. B 94 (2005) 237-244].


Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 683-698 ◽  
Author(s):  
Kinkar Das ◽  
Marjan Matejic ◽  
Emina Milovanovic ◽  
Igor Milovanovic

LetG = (V,E) be a simple connected graph of order n (?2) and size m, where V(G) = {1, 2,..., n}. Also let ? = d1 ? d2 ?... ? dn = ? > 0, di = d(i), be a sequence of its vertex degrees with maximum degree ? and minimum degree ?. The symmetric division deg index, SDD, was defined in [D. Vukicevic, Bond additive modeling 2. Mathematical properties of max-min rodeg index, Croat. Chem. Acta 83 (2010) 261- 273] as SDD = SDD(G) = ?i~j d2i+d2j/didj, where i~j means that vertices i and j are adjacent. In this paper we give some new bounds for this topological index. Moreover, we present a relation between topological indices of graph.


2013 ◽  
Vol Vol. 15 no. 1 (Graph Theory) ◽  
Author(s):  
Ben Seamone ◽  
Brett Stevens

Graph Theory International audience Karonski, Luczak, and Thomason (2004) conjecture that, for any connected graph G on at least three vertices, there exists an edge weighting from 1, 2, 3 such that adjacent vertices receive different sums of incident edge weights. Bartnicki, Grytczuk, and Niwcyk (2009) make a stronger conjecture, that each edge's weight may be chosen from an arbitrary list of size 3 rather than 1, 2, 3. We examine a variation of these conjectures, where each vertex is coloured with a sequence of edge weights. Such a colouring relies on an ordering of E(G), and so two variations arise - one where we may choose any ordering of E(G) and one where the ordering is fixed. In the former case, we bound the list size required for any graph. In the latter, we obtain a bound on list sizes for graphs with sufficiently large minimum degree. We also extend our methods to a list variation of irregularity strength, where each vertex receives a distinct sequence of edge weights.


1980 ◽  
Vol 32 (6) ◽  
pp. 1325-1332 ◽  
Author(s):  
J. A. Bondy ◽  
R. C. Entringer

The relationship between the lengths of cycles in a graph and the degrees of its vertices was first studied in a general context by G. A. Dirac. In [5], he proved that every 2-connected simple graph on n vertices with minimum degree d contains a cycle of length at least min{2d, n};. Dirac's theorem was subsequently strengthened in various directions in [7], [6], [13], [12], [2], [1], [11], [8], [14], [15] and [16].Our aim here is to investigate another aspect of this relationship, namely how the lengths of the cycles in a 2-connected graph depend on the maximum degree. Let us denote by ƒ(n, d) the largest integer k such that every 2-connected simple graph on n vertices with maximum degree d contains a cycle of length at least k. We prove in Section 2 that, for d ≧ 3 and n ≧ d + 2,


2012 ◽  
Vol 87 (2) ◽  
pp. 255-271 ◽  
Author(s):  
S. MUKWEMBI ◽  
S. MUNYIRA

AbstractLet G be a finite connected graph of order n, minimum degree δ and diameter d. The degree distance D′(G) of G is defined as ∑ {u,v}⊆V (G)(deg u+deg v) d(u,v), where deg w is the degree of vertex w and d(u,v) denotes the distance between u and v. In this paper, we find an asymptotically sharp upper bound on the degree distance in terms of order, minimum degree and diameter. In particular, we prove that \[ D^\prime (G)\le \frac {1}{4}\,dn\biggl (n-\frac {d}{3}(\delta +1)\biggr )^2+O(n^3). \] As a corollary, we obtain the bound D′ (G)≤n4 /(9(δ+1) )+O(n3) for a graph G of order n and minimum degree δ. This result, apart from improving on a result of Dankelmann et al. [‘On the degree distance of a graph’, Discrete Appl. Math.157 (2009), 2773–2777] for graphs of given order and minimum degree, completely settles a conjecture of Tomescu [‘Some extremal properties of the degree distance of a graph’, Discrete Appl. Math.98(1999), 159–163].


Sign in / Sign up

Export Citation Format

Share Document