scholarly journals On the Game Domination Number of Graphs with Given Minimum Degree

10.37236/4497 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
Csilla Bujtás

In the domination game, introduced by Brešar, Klavžar, and Rall in 2010, Dominator and Staller alternately select a vertex of a graph $G$. A move is legal if the selected vertex $v$ dominates at least one new vertex – that is, if we have a $u\in N[v]$ for which no vertex from $N[u]$ was chosen up to this point of the game. The game ends when no more legal moves can be made, and its length equals the number of vertices selected. The goal of Dominator is to minimize whilst that of Staller is to maximize the length of the game. The game domination number $\gamma_g(G)$ of $G$ is the length of the domination game in which Dominator starts and both players play optimally. In this paper we establish an upper bound on $\gamma_g(G)$ in terms of the minimum degree $\delta$ and the order $n$ of $G$. Our main result states that for every $\delta \ge 4$,$$\gamma_g(G)\le \frac{15\delta^4-28\delta^3-129\delta^2+354\delta-216}{45\delta^4-195\delta^3+174\delta^2+174\delta-216}\; n.$$Particularly, $\gamma_g(G) < 0.5139\; n$ holds for every graph of minimum degree 4, and $\gamma_g(G) < 0.4803\; n$ if the minimum degree is greater than 4. Additionally, we prove that $\gamma_g(G) < 0.5574\; n$ if $\delta=3$.

2019 ◽  
Vol 13 (1) ◽  
pp. 261-289 ◽  
Author(s):  
Mieczysław Borowiecki ◽  
Anna Fiedorowicz ◽  
Elżbieta Sidorowicz

In this paper we introduce a domination game based on the notion of connected domination. Let G = (V,E) be a connected graph of order at least 2. We define a connected domination game on G as follows: The game is played by two players, Dominator and Staller. The players alternate taking turns choosing a vertex of G (Dominator starts). A move of a player by choosing a vertex v is legal, if (1) the vertex v dominates at least one additional vertex that was not dominated by the set of previously chosen vertices and (2) the set of all chosen vertices induces a connected subgraph of G. The game ends when none of the players has a legal move (i.e., G is dominated). The aim of Dominator is to finish as soon as possible, Staller has an opposite aim. Let D be the set of played vertices obtained at the end of the connected domination game (D is a connected dominating set of G). The connected game domination number of G, denoted cg(G), is the minimum cardinality of D, when both players played optimally on G. We provide an upper bound on cg(G) in terms of the connected domination number. We also give a tight upper bound on this parameter for the class of 2-trees. Next, we investigate the Cartesian product of a complete graph and a tree, and we give exact values of the connected game domination number for such a product, when the tree is a path or a star. We also consider some variants of the game, in particular, a Staller-start game.


2009 ◽  
Vol 309 (4) ◽  
pp. 639-646 ◽  
Author(s):  
Allan Frendrup ◽  
Michael A. Henning ◽  
Bert Randerath ◽  
Preben Dahl Vestergaard

2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Boštjan Brešar ◽  
Sandi Klavžar ◽  
Gasper Košmrlj ◽  
Doug F. Rall

Graph Theory International audience We introduce the concept of guarded subgraph of a graph, which as a condition lies between convex and 2-isometric subgraphs and is not comparable to isometric subgraphs. Some basic metric properties of guarded subgraphs are obtained, and then this concept is applied to the domination game. In this game two players, Dominator and Staller, alternate choosing vertices of a graph, one at a time, such that each chosen vertex enlarges the set of vertices dominated so far. The aim of Dominator is that the graph is dominated in as few steps as possible, while the aim of Staller is just the opposite. The game domination number is the number of vertices chosen when Dominator starts the game and both players play optimally. The main result of this paper is that the game domination number of a graph is not smaller than the game domination number of any guarded subgraph. Several applications of this result are presented.


2016 ◽  
Vol 10 (1) ◽  
pp. 30-45 ◽  
Author(s):  
Sandi Klavzar ◽  
Gasper Kosmrlj ◽  
Simon Schmidt

The domination game is played on a graph G by Dominator and Staller. The game domination number ?(G) of G is the number of moves played when Dominator starts and both players play optimally. Similarly, ?g (G) is the number of moves played when Staller starts. Graphs G with ?(G) = 2, graphs with ?g(G) = 2, as well as graphs extremal with respect to the diameter among these graphs are characterized. In particular, ?g (G) = 2 and diam(G) = 3 hold for a graph G if and only if G is a so-called gamburger. Graphs G with ?(G) = 3 and diam(G) = 6, as well as graphs G with ?g(G) = 3 and diam(G) = 5 are also characterized.


2019 ◽  
Vol 17 (1) ◽  
pp. 1269-1280 ◽  
Author(s):  
Csilla Bujtás ◽  
Pakanun Dokyeesun ◽  
Vesna Iršič ◽  
Sandi Klavžar

Abstract The connected domination game on a graph G is played by Dominator and Staller according to the rules of the standard domination game with the additional requirement that at each stage of the game the selected vertices induce a connected subgraph of G. If Dominator starts the game and both players play optimally, then the number of vertices selected during the game is the connected game domination number of G. Here this invariant is studied on Cartesian product graphs. A general upper bound is proved and demonstrated to be sharp on Cartesian products of stars with paths or cycles. The connected game domination number is determined for Cartesian products of P3 with arbitrary paths or cycles, as well as for Cartesian products of an arbitrary graph with Kk for the cases when k is relatively large. A monotonicity theorem is proved for products with one complete factor. A sharp general lower bound on the connected game domination number of Cartesian products is also established.


2019 ◽  
Vol 270 ◽  
pp. 159-167 ◽  
Author(s):  
Rana Khoeilar ◽  
Hossein Karami ◽  
Mustapha Chellali ◽  
Seyed Mahmoud Sheikholeslami

10.37236/983 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

A set $S$ of vertices in a graph $G$ is a total dominating set of $G$ if every vertex of $G$ is adjacent to some vertex in $S$. The minimum cardinality of a total dominating set of $G$ is the total domination number of $G$. Let $G$ be a connected graph of order $n$ with minimum degree at least two and with maximum degree at least three. We define a vertex as large if it has degree more than $2$ and we let ${\cal L}$ be the set of all large vertices of $G$. Let $P$ be any component of $G - {\cal L}$; it is a path. If $|P| \equiv 0 \, ( {\rm mod} \, 4)$ and either the two ends of $P$ are adjacent in $G$ to the same large vertex or the two ends of $P$ are adjacent to different, but adjacent, large vertices in $G$, we call $P$ a $0$-path. If $|P| \ge 5$ and $|P| \equiv 1 \, ( {\rm mod} \, 4)$ with the two ends of $P$ adjacent in $G$ to the same large vertex, we call $P$ a $1$-path. If $|P| \equiv 3 \, ( {\rm mod} \, 4)$, we call $P$ a $3$-path. For $i \in \{0,1,3\}$, we denote the number of $i$-paths in $G$ by $p_i$. We show that the total domination number of $G$ is at most $(n + p_0 + p_1 + p_3)/2$. This result generalizes a result shown in several manuscripts (see, for example, J. Graph Theory 46 (2004), 207–210) which states that if $G$ is a graph of order $n$ with minimum degree at least three, then the total domination of $G$ is at most $n/2$. It also generalizes a result by Lam and Wei stating that if $G$ is a graph of order $n$ with minimum degree at least two and with no degree-$2$ vertex adjacent to two other degree-$2$ vertices, then the total domination of $G$ is at most $n/2$.


2018 ◽  
Vol 99 (2) ◽  
pp. 327-337 ◽  
Author(s):  
TIJO JAMES ◽  
SANDI KLAVŽAR ◽  
AMBAT VIJAYAKUMAR

We investigate the domination game and the game domination number $\unicode[STIX]{x1D6FE}_{g}$ in the class of split graphs. We prove that $\unicode[STIX]{x1D6FE}_{g}(G)\leq n/2$ for any isolate-free $n$-vertex split graph $G$, thus strengthening the conjectured $3n/5$ general bound and supporting Rall’s $\lceil n/2\rceil$-conjecture. We also characterise split graphs of even order with $\unicode[STIX]{x1D6FE}_{g}(G)=n/2$.


Sign in / Sign up

Export Citation Format

Share Document