scholarly journals General upper bound on the game domination number

2020 ◽  
Vol 285 ◽  
pp. 530-538
Author(s):  
Csilla Bujtás
10.37236/4497 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
Csilla Bujtás

In the domination game, introduced by Brešar, Klavžar, and Rall in 2010, Dominator and Staller alternately select a vertex of a graph $G$. A move is legal if the selected vertex $v$ dominates at least one new vertex – that is, if we have a $u\in N[v]$ for which no vertex from $N[u]$ was chosen up to this point of the game. The game ends when no more legal moves can be made, and its length equals the number of vertices selected. The goal of Dominator is to minimize whilst that of Staller is to maximize the length of the game. The game domination number $\gamma_g(G)$ of $G$ is the length of the domination game in which Dominator starts and both players play optimally. In this paper we establish an upper bound on $\gamma_g(G)$ in terms of the minimum degree $\delta$ and the order $n$ of $G$. Our main result states that for every $\delta \ge 4$,$$\gamma_g(G)\le \frac{15\delta^4-28\delta^3-129\delta^2+354\delta-216}{45\delta^4-195\delta^3+174\delta^2+174\delta-216}\; n.$$Particularly, $\gamma_g(G) < 0.5139\; n$ holds for every graph of minimum degree 4, and $\gamma_g(G) < 0.4803\; n$ if the minimum degree is greater than 4. Additionally, we prove that $\gamma_g(G) < 0.5574\; n$ if $\delta=3$.


2019 ◽  
Vol 13 (1) ◽  
pp. 261-289 ◽  
Author(s):  
Mieczysław Borowiecki ◽  
Anna Fiedorowicz ◽  
Elżbieta Sidorowicz

In this paper we introduce a domination game based on the notion of connected domination. Let G = (V,E) be a connected graph of order at least 2. We define a connected domination game on G as follows: The game is played by two players, Dominator and Staller. The players alternate taking turns choosing a vertex of G (Dominator starts). A move of a player by choosing a vertex v is legal, if (1) the vertex v dominates at least one additional vertex that was not dominated by the set of previously chosen vertices and (2) the set of all chosen vertices induces a connected subgraph of G. The game ends when none of the players has a legal move (i.e., G is dominated). The aim of Dominator is to finish as soon as possible, Staller has an opposite aim. Let D be the set of played vertices obtained at the end of the connected domination game (D is a connected dominating set of G). The connected game domination number of G, denoted cg(G), is the minimum cardinality of D, when both players played optimally on G. We provide an upper bound on cg(G) in terms of the connected domination number. We also give a tight upper bound on this parameter for the class of 2-trees. Next, we investigate the Cartesian product of a complete graph and a tree, and we give exact values of the connected game domination number for such a product, when the tree is a path or a star. We also consider some variants of the game, in particular, a Staller-start game.


2018 ◽  
Vol 341 (6) ◽  
pp. 1768-1777 ◽  
Author(s):  
Kexiang Xu ◽  
Xia Li ◽  
Sandi Klavžar

2009 ◽  
Vol 309 (5) ◽  
pp. 1142-1162 ◽  
Author(s):  
A.V. Kostochka ◽  
B.Y. Stodolsky

2019 ◽  
Vol 11 (01) ◽  
pp. 1950004
Author(s):  
Michael A. Henning ◽  
Nader Jafari Rad

A subset [Formula: see text] of vertices in a hypergraph [Formula: see text] is a transversal if [Formula: see text] has a nonempty intersection with every edge of [Formula: see text]. The transversal number of [Formula: see text] is the minimum size of a transversal in [Formula: see text]. A subset [Formula: see text] of vertices in a graph [Formula: see text] with no isolated vertex, is a total dominating set if every vertex of [Formula: see text] is adjacent to a vertex of [Formula: see text]. The minimum cardinality of a total dominating set in [Formula: see text] is the total domination number of [Formula: see text]. In this paper, we obtain a new (improved) probabilistic upper bound for the transversal number of a hypergraph, and a new (improved) probabilistic upper bound for the total domination number of a graph.


2018 ◽  
Vol 36 (1) ◽  
pp. 81-89 ◽  
Author(s):  
J. Amjadi ◽  
S. Nazari-Moghaddam ◽  
S. M. Sheikholeslami ◽  
L. Volkmann

Sign in / Sign up

Export Citation Format

Share Document