scholarly journals A Recurrence Relation for the "inv" Analogue of $q$-Eulerian Polynomials

10.37236/471 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Chak-On Chow

We study in the present work a recurrence relation, which has long been overlooked, for the $q$-Eulerian polynomial $A_n^{{\rm des},{\rm inv}}(t,q) =\sum_{\sigma\in\mathfrak{S}_n} t^{{\rm des}(\sigma)}q^{{\rm inv}(\sigma)}$, where ${\rm des}(\sigma)$ and ${\rm inv}(\sigma)$ denote, respectively, the descent number and inversion number of $\sigma$ in the symmetric group $\mathfrak{S}_n$ of degree $n$. We give an algebraic proof and a combinatorial proof of the recurrence relation.


10.37236/9037 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Hiranya Kishore Dey ◽  
Sivaramakrishnan Sivasubramanian

The Eulerian polynomial $A_n(t)$ enumerating descents in $\mathfrak{S}_n$ is known to be gamma positive for all $n$. When enumeration is done over the type B and type D Coxeter groups, the type B and type D Eulerian polynomials are also known to be gamma positive for all $n$. We consider $A_n^+(t)$ and $A_n^-(t)$, the polynomials which enumerate descents in the alternating group $\mathcal{A}_n$ and in $\mathfrak{S}_n - \mathcal{A}_n$ respectively.  We show the following results about $A_n^+(t)$ and $A_n^-(t)$: both polynomials are gamma positive iff $n \equiv 0,1$ (mod 4). When $n \equiv 2,3$ (mod 4), both polynomials are not palindromic. When $n \equiv 2$ (mod 4), we show that {\sl two} gamma positive summands add up to give $A_n^+(t)$ and $A_n^-(t)$. When $n \equiv 3$ (mod 4), we show that {\sl three} gamma positive summands add up to give both $A_n^+(t)$ and $A_n^-(t)$.  We show similar gamma positivity results about the descent based type B and type D Eulerian polynomials when enumeration is done over the positive elements in the respective Coxeter groups. We also show that the polynomials considered in this work are unimodal.



10.37236/5514 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Anna Borowiec ◽  
Wojciech Młotkowski

We introduce a new array of type $D$ Eulerian numbers, different from that studied by Brenti, Chow and Hyatt. We find in particular the recurrence relation, Worpitzky formula and the generating function. We also find the probability distributions whose moments are Eulerian polynomials of type $A$, $B$ and $D$.



Filomat ◽  
2018 ◽  
Vol 32 (20) ◽  
pp. 6879-6891
Author(s):  
Irem Kucukoglu ◽  
Yilmaz Simsek

The first aim of this paper is to give identities and relations for a new family of the combinatorial numbers and the Apostol-Euler type numbers of the second kind, the Stirling numbers, the Apostol-Bernoulli type numbers, the Bell numbers and the numbers of the Lyndon words by using some techniques including generating functions, functional equations and inversion formulas. The second aim is to derive some derivative formulas and combinatorial sums by applying derivative operators including the Caputo fractional derivative operators. Moreover, we give a recurrence relation for the Apostol-Euler type numbers of the second kind. By using this recurrence relation, we construct a computation algorithm for these numbers. In addition, we derive some novel formulas including the Stirling numbers and other special numbers. Finally, we also some remarks, comments and observations related to our results.



Author(s):  
Sun Kim

We give a combinatorial proof of a generalization of an identity involving the sum of divisors function [Formula: see text] and the partition function [Formula: see text] which is a companion of Euler’s recurrence formula for [Formula: see text]



2018 ◽  
Vol 14 (2) ◽  
pp. 7983-8003
Author(s):  
Adenike Olusola Adeniji

Mathematics of music and sound production brings to bear the physical and practical application of Mathematics in the field of Music. The composition of songs involves the principle of key scaling, their respective interval as calculated with the aid of an appropriate key division which suites the generality of songs composed in different keys with the keyboard. Melodies, harmonies and rhythms produced in the stage of rendition is characterized by transposition and inversion of key to suite each song. With the aid of keyboard, elements of Symmetric group are used to compose songs.



2000 ◽  
Vol 159 ◽  
pp. 179-200 ◽  
Author(s):  
Satoshi Fukutani ◽  
Kazuo Okamoto ◽  
Hiroshi Umemura

We give a purely algebraic proof that the rational functions Pn(t), Qn(t) inductively defined by the recurrence relation (1), (2) respectively, are polynomials. The proof reveals the Hirota bilinear relations satisfied by the τ-functions.



2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Mirkó Visontai ◽  
Nathan Williams

International audience We give a multivariate analog of the type B Eulerian polynomial introduced by Brenti. We prove that this multivariate polynomial is stable generalizing Brenti's result that every root of the type B Eulerian polynomial is real. Our proof combines a refinement of the descent statistic for signed permutations with the notion of real stability—a generalization of real-rootedness to polynomials in multiple variables. The key is that our refined multivariate Eulerian polynomials satisfy a recurrence given by a stability-preserving linear operator. Nous prèsentons un raffinement multivariè d'un polynôme eulèrien de type B dèfini par Brenti. En prouvant que ce polynôme est stable nous gènèralisons un rèsultat de Brenti selon laquel chaque racine du polynôme eulèrien de type B est rèelle. Notre preuve combine un raffinement de la statistique des descentes pour les permutations signèes avec la stabilitè—une gènèralisation de la propriètè d'avoir uniquement des racines rèelles aux polynômes en plusieurs variables. La connexion est que nos polynômes eulèriens raffinès satisfont une rècurrence donnèe par un opèrateur linèaire qui prèserve la stabilitè.



10.37236/1879 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
Dominique Foata ◽  
Guo-Niu Han

As for the symmetric group of ordinary permutations there is also a statistical study of the group of signed permutations, that consists of calculating multivariable generating functions for this group by statistics involving record values and the length function. Two approaches are here systematically explored, using the flag-major index on the one hand, and the flag-inversion number on the other hand. The MacMahon Verfahren appears as a powerful tool throughout.



2016 ◽  
Vol 49 (3) ◽  
Author(s):  
Alexandre Laugier ◽  
Manjil P. Saikia

AbstractWe give a combinatorial proof of an elementary property of generalized Lucas polynomials, inspired by [1]. These polynomials in s and t are defined by the recurrence relation 〈n〉 = s〈n-1〉+t〈n-2〉 for n ≥ 2. The initial values are 〈0〉 = 2; 〈1〉= s, respectively.



2015 ◽  
Vol 93 (1) ◽  
pp. 1-12
Author(s):  
ZHICONG LIN

We prove the unimodality of some coloured$q$-Eulerian polynomials, which involve the flag excedances, the major index and the fixed points on coloured permutation groups, via two recurrence formulas. In particular, we confirm a recent conjecture of Mongelli about the unimodality of the flag excedances over type B derangements. Furthermore, we find the coloured version of Gessel’s hook factorisation, which enables us to interpret these two recurrences combinatorially. We also provide a combinatorial proof of a symmetric and unimodal expansion for the coloured derangement polynomial, which was first established by Shin and Zeng using continued fractions.



Sign in / Sign up

Export Citation Format

Share Document