scholarly journals An Algebra Associated with a Flag in a Subspace Lattice over a Finite Field and the Quantum Affine Algebra

10.37236/7008 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Yuta Watanabe

In this paper, we introduce an algebra $\mathcal{H}$ from a subspace lattice with respect to a fixed flag which contains its incidence algebra as a proper subalgebra. We then establish a relation between the algebra $\mathcal{H}$ and the quantum affine algebra $U_{q^{1/2}}(\widehat{\mathfrak{sl}}_2)$, where $q$ denotes the cardinality of the base field. It is an extension of the well-known relation between the incidence algebra of a subspace lattice and the quantum algebra $U_{q^{1/2}}(\mathfrak{sl}_2)$. We show that there exists an algebra homomorphism from $U_{q^{1/2}}(\widehat{\mathfrak{sl}}_2)$ to $\mathcal{H}$ and that any irreducible module for $\mathcal{H}$ is irreducible as an $U_{q^{1/2}}(\widehat{\mathfrak{sl}}_2)$-module.


1994 ◽  
Vol 09 (14) ◽  
pp. 1253-1265 ◽  
Author(s):  
HITOSHI KONNO

Using free field representation of quantum affine algebra [Formula: see text], we investigate the structure of the Fock modules over [Formula: see text]. The analysis is based on a q-analog of the BRST formalism given by Bernard and Felder in the affine Kac-Moody algebra [Formula: see text]. We give an explicit construction of the singular vectors using the BRST charge. By the same cohomology analysis as the classical case (q=1), we obtain the irreducible highest weight representation space as a non-trivial cohomology group. This enables us to calculate a trace of the q-vertex operators over this space.



2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Atsuo Kuniba ◽  
Masato Okado

Abstract A trick to obtain a solution to the set-theoretical reflection equation from a known one to the Yang–Baxter equation is applied to crystals and geometric crystals associated to the quantum affine algebra of type $A^{(1)}_{n-1}$.



2007 ◽  
Vol 35 (7) ◽  
pp. 2140-2159 ◽  
Author(s):  
Darren Funk-Neubauer


2007 ◽  
Vol 13 (1-3) ◽  
pp. 39-62 ◽  
Author(s):  
Tatsuro Ito ◽  
Paul Terwilliger




1999 ◽  
Vol 556 (3) ◽  
pp. 485-504 ◽  
Author(s):  
Bo-Yu Hou ◽  
Wen-Li Yang ◽  
Yao-Zhong Zhang


2015 ◽  
Vol 18 (1) ◽  
pp. 170-197 ◽  
Author(s):  
Reinier Bröker ◽  
Everett W. Howe ◽  
Kristin E. Lauter ◽  
Peter Stevenhagen

AbstractWe study the problem of efficiently constructing a curve $C$ of genus $2$ over a finite field $\mathbb{F}$ for which either the curve $C$ itself or its Jacobian has a prescribed number $N$ of $\mathbb{F}$-rational points.In the case of the Jacobian, we show that any ‘CM-construction’ to produce the required genus-$2$ curves necessarily takes time exponential in the size of its input.On the other hand, we provide an algorithm for producing a genus-$2$ curve with a given number of points that, heuristically, takes polynomial time for most input values. We illustrate the practical applicability of this algorithm by constructing a genus-$2$ curve having exactly $10^{2014}+9703$ (prime) points, and two genus-$2$ curves each having exactly $10^{2013}$ points.In an appendix we provide a complete parametrization, over an arbitrary base field $k$ of characteristic neither two nor three, of the family of genus-$2$ curves over $k$ that have $k$-rational degree-$3$ maps to elliptic curves, including formulas for the genus-$2$ curves, the associated elliptic curves, and the degree-$3$ maps.Supplementary materials are available with this article.



Sign in / Sign up

Export Citation Format

Share Document