proper subalgebra
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

10.37236/7008 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Yuta Watanabe

In this paper, we introduce an algebra $\mathcal{H}$ from a subspace lattice with respect to a fixed flag which contains its incidence algebra as a proper subalgebra. We then establish a relation between the algebra $\mathcal{H}$ and the quantum affine algebra $U_{q^{1/2}}(\widehat{\mathfrak{sl}}_2)$, where $q$ denotes the cardinality of the base field. It is an extension of the well-known relation between the incidence algebra of a subspace lattice and the quantum algebra $U_{q^{1/2}}(\mathfrak{sl}_2)$. We show that there exists an algebra homomorphism from $U_{q^{1/2}}(\widehat{\mathfrak{sl}}_2)$ to $\mathcal{H}$ and that any irreducible module for $\mathcal{H}$ is irreducible as an $U_{q^{1/2}}(\widehat{\mathfrak{sl}}_2)$-module.


2018 ◽  
Vol 10 (1) ◽  
pp. 206-212
Author(s):  
T.V. Vasylyshyn

A $*$-polynomial is a function on a complex Banach space $X,$ which is a sum of so-called $(p,q)$-polynomials. In turn, for non-negative integers $p$ and $q,$ a $(p,q)$-polynomial is a function on $X,$ which is the restriction to the diagonal of some mapping, defined on the Cartesian power $X^{p+q},$ which is linear with respect to every of its first $p$ arguments and antilinear with respect to every of its other $q$ arguments. The set of all continuous $*$-polynomials on $X$ form an algebra, which contains the algebra of all continuous polynomials on $X$ as a proper subalgebra. So, completions of this algebra with respect to some natural norms are wider classes of functions than algebras of holomorphic functions. On the other hand, due to the similarity of structures of $*$-polynomials and polynomials, for the investigation of such completions one can use the technique, developed for the investigation of holomorphic functions on Banach spaces. We investigate the Frechet algebra of functions on a complex Banach space, which is the completion of the algebra of all continuous $*$-polynomials with respect to the countable system of norms, equivalent to norms of the uniform convergence on closed balls of the space. We establish some properties of shift operators (which act as the addition of some fixed element of the underlying space to the argument of a function) on this algebra. In particular, we show that shift operators are well-defined continuous linear operators. Also we prove some estimates for norms of values of shift operators. Using these results, we investigate one special class of functions from the algebra, which is important in the description of the spectrum (the set of all maximal ideals) of the algebra.


2016 ◽  
Vol 60 (2) ◽  
pp. 299-318
Author(s):  
Robert J. Archbold ◽  
Douglas W. B. Somerset

AbstractLet A = C(X) ⊗ K(H), where X is a compact Hausdorff space and K(H) is the algebra of compact operators on a separable infinite-dimensional Hilbert space. Let As be the algebra of strong*-continuous functions from X to K(H). Then As/A is the inner corona algebra of A. We show that if X has no isolated points, then As/A is an essential ideal of the corona algebra of A, and Prim(As/A), the primitive ideal space of As/A, is not weakly Lindelof. If X is also first countable, then there is a natural injection from the power set of X to the lattice of closed ideals of As/A. If X = βℕ\ℕ and the continuum hypothesis (CH) is assumed, then the corona algebra of A is a proper subalgebra of the multiplier algebra of As/A. Several of the results are obtained in the more general setting of C0(X)-algebras.


2011 ◽  
Vol 54 (2) ◽  
pp. 531-542 ◽  
Author(s):  
David A. Towers

AbstractLet M be a maximal subalgebra of the Lie algebra L. A subalgebra C of L is said to be a completion for M if C is not contained in M but every proper subalgebra of C that is an ideal of L is contained in M. The set I(M) of all completions of M is called the index complex of M in L. We use this concept to investigate the influence of the maximal subalgebras on the structure of a Lie algebra, in particular, finding new characterizations of solvable and supersolvable Lie algebras.


Sign in / Sign up

Export Citation Format

Share Document