scholarly journals On the Existence of Frobenius Digraphical Representations

10.37236/7097 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Pablo Spiga

A Frobenius group is a transitive permutation group that is not regular and such that only the identity fixes more than one point. A digraphical, respectively graphical, Frobenius representation, DFR and GFR for short, of a Frobenius group $F$ is a digraph, respectively graph, whose automorphism group as a group of permutations of the vertex set is $F$. The problem of classifying which Frobenius groups admit a DFR and GFR has been proposed by Mark Watkins and Thomas Tucker and is a natural extension of the problem of classifying which groups that have a digraphical, respectively graphical, regular representation.In this paper, we give a partial answer to a question of Mark Watkins and Thomas Tucker concerning Frobenius representations: "All but finitely many Frobenius groups with a given Frobenius complement have a DFR".  


1959 ◽  
Vol 11 ◽  
pp. 39-47 ◽  
Author(s):  
Daniel Gorknstein

If a group contains two subgroups A and B such that every element of the group is either in A or can be represented uniquely in the form aba', a, a’ in A, b ≠ 1 in B, we shall call the group an independent ABA-group. In this paper we shall investigate the structure of independent ABA -groups of finite order.A simple example of such a group is the group G of one-dimensional affine transformations over a finite field K. In fact, if we denote by a the transformation x’ = ωx, where ω is a primitive element of K, and by b the transformation x’ = —x + 1, it is easy to see that G is an independent ABA -group with respect to the cyclic subgroups A, B generated by a and b respectively.Since G admits a faithful representation on m letters (m = number of elements in K) as a transitive permutation group in which no permutation other than the identity leaves two letters fixed, and in which there is at least one permutation leaving exactly one letter fixed, G is an example of a Frobenius group.



1957 ◽  
Vol 9 ◽  
pp. 587-596 ◽  
Author(s):  
Walter Feit

Let G be a group which has a faithful representation as a transitive permutation group on m letters in which no permutation other than the identity leaves two letters unaltered, and there is at least one permutation leaving exactly one letter fixed. It is easily seen that if G has order mh, a necessary and sufficient condition for G to have such a representation is that G contains a subgroup H of order h which is its own normalizer in G and is disjoint from all its conjugates. Such a group G is called a Frobenius group of type (h, m).



2020 ◽  
Vol 23 (3) ◽  
pp. 393-397
Author(s):  
Wolfgang Knapp ◽  
Peter Schmid

AbstractLet G be a finite transitive permutation group of degree n, with point stabilizer {H\neq 1} and permutation character π. For every positive integer t, we consider the generalized character {\psi_{t}=\rho_{G}-t(\pi-1_{G})}, where {\rho_{G}} is the regular character of G and {1_{G}} the 1-character. We give necessary and sufficient conditions on t (and G) which guarantee that {\psi_{t}} is a character of G. A necessary condition is that {t\leq\min\{n-1,\lvert H\rvert\}}, and it turns out that {\psi_{t}} is a character of G for {t=n-1} resp. {t=\lvert H\rvert} precisely when G is 2-transitive resp. a Frobenius group.



10.37236/7294 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Mark E. Watkins

A graphical Frobenius representation (GFR) of a Frobenius (permutation) group $G$ is a graph $\Gamma$ whose automorphism group Aut$(\Gamma)$ acts as a Frobenius permutation group on the vertex set of $\Gamma$, that is, Aut$(\Gamma)$ acts vertex-transitively with the property that all nonidentity automorphisms fix either exactly one or zero vertices and there are some of each kind. The set $K$ of all fixed-point-free automorphisms together with the identity is called the kernel of $G$. Whenever $G$ is finite, $K$ is a regular normal subgroup of $G$ (F. G. Frobenius, 1901), in which case $\Gamma$ is a Cayley graph of $K$. The same holds true for all the infinite instances presented here.Infinite, locally finite, vertex-transitive graphs can be classified with respect to (i) the cardinality of their set of ends and (ii) their growth rate. We construct families of infinite GFRs for all possible combinations of these two properties. There exist infinitely many GFRs with polynomial growth of degree $d$ for every positive integer $d$, and there exist infinite families of GFRs of exponential growth, both $1$-ended and infinitely-ended, that underlie infinite chiral planar maps. There also exist GFRs of free products of finitely many finitely generated groups. Graphs of connectivity 1 having a Frobenius automorphism group are characterized.



1980 ◽  
Vol 32 (2) ◽  
pp. 281-293 ◽  
Author(s):  
Jack Sonn

A finite transitive permutation group G is called a Frobenius group if every element of G other than 1 leaves at most one letter fixed, and some element of G other than 1 leaves some letter fixed. It is proved in [20] (and sketched below) that if k is a number field such that SL(2, 5) and one other nonsolvable group Ŝ5 of order 240 are realizable as Galois groups over k, then every Frobenius group is realizable over k. It was also proved in [20] that there exists a quadratic (imaginary) field over which these two groups are realizable. In this paper we prove that they are realizable over the rationals Q, hence we ObtainTHEOREM 1. Every Frobenius group is realizable as the Galois group of an extension of the rational numbersQ.



1989 ◽  
Vol 105 (2) ◽  
pp. 223-236 ◽  
Author(s):  
J. K. Truss

The group Aut Γ of automorphisms of Rado's universal graph Γ (otherwise known as the ‘random’ graph: see [1]) and the corresponding groups Aut Γc for C a set of ‘colours’ with 2 ≤ |C| ≤ ℵ0, were studied in [4]. It was shown that Aut Γc is a simple group, and the possible cycle types of its members were classified. A natural extension of Aut Γc to a highly transitive permutation group on the same set is obtained by considering the ‘almost automorphisms’ of Γ. It is the purpose of the present paper to answer similar questions about the resulting group AAut Γc. Namely we shall classify its normal subgroups and the cycle types of its members. The main result on normal subgroups is summed up in Corollary 2·9, which says that the non-trivial normal subgroups of AAut Γc form a lattice isomorphic to the lattice of subgroups of the free Abelian group of rank n where n = |C| – 1, and for cycle types it will be shown that those occurring in AAut Γc are precisely the same as in Aut Γc except for those which are the product of finitely many cycles.



2019 ◽  
Vol 22 (4) ◽  
pp. 637-645
Author(s):  
Gil Kaplan

AbstractLet G be a finite group. G is called a Frobenius–Wielandt group if there exists {H<G} such that {U=\langle H\cap H^{g}\mid g\in G-H\rangle} is a proper subgroup of H. The Wielandt theorem [H. Wielandt, Über die Existenz von Normalteilern in endlichen Gruppen, Math. Nachr. 18 1958, 274–280; Mathematische Werke Vol. 1, 769–775] on the structure of G generalizes the celebrated Frobenius theorem. From a permutation group point of view, considering the action of G on the coset space {G/H}, it states in particular that the subgroup {D=D_{G}(H)} generated by all derangements (fixed-point-free elements) is a proper subgroup of G. Let {W=U^{G}}, the normal closure of U in G. Then W is the subgroup generated by all elements fixing at least two points. We present the proof of the Wielandt theorem in a new way (Theorem 1.6, Corollary 1.7, Theorem 1.8) such that the unique component whose proof is not elementary or by the Frobenius theorem is the equality {W\cap H=U}. This presentation shows what can be achieved by elementary arguments and how Frobenius groups are involved in one case of Frobenius–Wielandt groups. To be more precise, Theorem 1.6 shows that there are two possible cases for a Frobenius–Wielandt group G with {H<G}: (a) {W=D} and {G=HW}, or (b) {W<D} and {HW<G}. In the latter case, {G/W} is a Frobenius group with a Frobenius complement {HW/W} and Frobenius kernel {D/W}.



1972 ◽  
Vol 24 (6) ◽  
pp. 993-1008 ◽  
Author(s):  
Lewis A. Nowitz ◽  
Mark E. Watkins

In this paper, all groups and graphs considered are finite and all graphs are simple (in the sense of Tutte [8, p. 50]). IfXis such a graph with vertex setV(X)and automorphism groupA(X),we say thatXis agraphical regular representation(GRR) of a given abstract groupGif(I) G ≅ A(X) , and(II)A(X)acts onV(X) as a regular permutation group; that is, givenu, v∈V(X), there exists a uniqueφ∈A(X)for whichφ(u) =v.That for any abstract groupGthere exists a graphXsatisfying (I) is well-known (cf. [3]).



1973 ◽  
Vol 15 (2) ◽  
pp. 163-171 ◽  
Author(s):  
D. A. Holton

It is the aim of this paper to introduce a new concept relating various subgroups of the automorphism group of a graph to corresponding subgraphs. Throughout g will denote a (Michigan) graph on a vertex set V(¦V¦ =n) and Γ(g)=G will be the automorphism group of G considered as a permutation group on V.En, Cn, Dn and Sn are the identity, cyclic, dihedral, and symmetric groups acting on a set of size n, while Sp(q) is the permutation group of pq objects which is isomorphic to Sp but is q-fold in the sense that the objects are permuted q at a time [6]. H ≦ G means that H is a subgroup of G. Other group concepts can be found in Wielandt [7]. The graphs G1 ∪ G2, G1 + G2, G1 × G2, and G1[G2] along with their corresponding groups are as defined in, for example, Harary [4]. Finally we use Kn for the complete graph on n vertices.



2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiyong Chen ◽  
Hong Yi Huang

Abstract Let 𝐺 be a permutation group on a set Ω, and recall that a base for 𝐺 is a subset of Ω such that its pointwise stabiliser is trivial. In a recent paper, Burness and Giudici introduced the Saxl graph of 𝐺, denoted Σ ⁢ ( G ) \Sigma(G) , with vertex set Ω and two vertices adjacent if and only if they form a base for 𝐺. If 𝐺 is transitive, then Σ ⁢ ( G ) \Sigma(G) is vertex-transitive, and it is natural to consider its valency (which we refer to as the valency of 𝐺). In this paper, we present a general method for computing the valency of any finite transitive group, and we use it to calculate the exact valency of every primitive group with stabiliser a Frobenius group with cyclic kernel. As an application, we calculate the valency of every almost simple primitive group with an alternating socle and soluble stabiliser, and we use this to extend results of Burness and Giudici on almost simple primitive groups with prime-power or odd valency.



Sign in / Sign up

Export Citation Format

Share Document