scholarly journals Self-complementing permutations of k-uniform hypergraphs

2009 ◽  
Vol Vol. 11 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Artur Szymański ◽  
Adam Pawel Wojda

Graphs and Algorithms International audience A k-uniform hypergraph H = ( V; E) is said to be self-complementary whenever it is isomorphic with its complement (H) over bar = ( V; ((V)(k)) - E). Every permutation sigma of the set V such that sigma(e) is an edge of (H) over bar if and only if e is an element of E is called self-complementing. 2-self-comlementary hypergraphs are exactly self complementary graphs introduced independently by Ringel ( 1963) and Sachs ( 1962). <br> For any positive integer n we denote by lambda(n) the unique integer such that n = 2(lambda(n)) c, where c is odd. <br> In the paper we prove that a permutation sigma of [1, n] with orbits O-1,..., O-m O m is a self-complementing permutation of a k-uniform hypergraph of order n if and only if there is an integer l >= 0 such that k = a2(l) + s, a is odd, 0 <= s <= 2(l) and the following two conditions hold: <br> (i)n = b2(l+1) + r,r is an element of {0,..., 2(l) - 1 + s}, and <br> (ii) Sigma(i:lambda(vertical bar Oi vertical bar)<= l) vertical bar O-i vertical bar <= r. <br> For k = 2 this result is the very well known characterization of self-complementing permutation of graphs given by Ringel and Sachs.

2014 ◽  
Vol 672-674 ◽  
pp. 1935-1939
Author(s):  
Guan Ru Li ◽  
Yi Ming Lei ◽  
Jirimutu

About the Katona-Kierstead definition of a Hamiltonian cycles in a uniform hypergraph, a decomposition of complete k-uniform hypergraph Kn(k) into Hamiltonian cycles studied by Bailey-Stevens and Meszka-Rosa. For n≡2,4,5 (mod 6), we design algorithm for decomposing the complete 3-uniform hypergraphs into Hamiltonian cycles by using the method of edge-partition. A decomposition of Kn(3) into 5-cycles has been presented for all admissible n≤17, and for all n=4m +1, m is a positive integer. In general, the existence of a decomposition into 5-cycles remains open. In this paper, we use the method of edge-partition and cycle sequence proposed by Jirimutu and Wang. We find a decomposition of K20(3) into 5-cycles.


10.37236/3414 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Sarah Behrens ◽  
Catherine Erbes ◽  
Michael Ferrara ◽  
Stephen G. Hartke ◽  
Benjamin Reiniger ◽  
...  

A sequence of nonnegative integers is $k$-graphic if it is the degree sequence of a $k$-uniform hypergraph. The only known characterization of $k$-graphic sequences is due to Dewdney in 1975. As this characterization does not yield an efficient algorithm, it is a fundamental open question to determine a more practical characterization. While several necessary conditions appear in the literature, there are few conditions that imply a sequence is $k$-graphic. In light of this, we present sharp sufficient conditions for $k$-graphicality based on a sequence's length and degree sum.Kocay and Li gave a family of edge exchanges (an extension of 2-switches) that could be used to transform one realization of a 3-graphic sequence into any other realization. We extend their result to $k$-graphic sequences for all $k \geq 3$. Finally we give several applications of edge exchanges in hypergraphs, including generalizing a result of Busch et al. on packing graphic sequences.


2019 ◽  
Vol 39 (3) ◽  
pp. 383-393
Author(s):  
Meihua Meihua ◽  
Meiling Guan ◽  
Jirimutu Jirimutu

We use the Katona-Kierstead definition of a Hamiltonian cycle in a uniform hypergraph. A decomposition of complete \(k\)-uniform hypergraph \(K^{(k)}_{n}\) into Hamiltonian cycles was studied by Bailey-Stevens and Meszka-Rosa. For \(n\equiv 2,4,5\pmod 6\), we design an algorithm for decomposing the complete 3-uniform hypergraphs into Hamiltonian cycles by using the method of edge-partition. A decomposition of \(K^{(3)}_{n}\) into 5-cycles has been presented for all admissible \(n\leq17\), and for all \(n=4^{m}+1\) when \(m\) is a positive integer. In general, the existence of a decomposition into 5-cycles remains open. In this paper, we show if \(42~|~(n-1)(n-2)\) and if there exist \(\lambda=\frac{(n-1)(n-2)}{42}\) sequences \((k_{i_{0}},k_{i_{1}},\ldots,k_{i_{6}})\) on \(D_{all}(n)\), then \(K^{(3)}_{n}\) can be decomposed into 7-cycles. We use the method of edge-partition and cycle sequence. We find a decomposition of \(K^{(3)}_{37}\) and \(K^{(3)}_{43}\) into 7-cycles.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Daniela Kühn ◽  
Deryk Osthus

International audience It is well known that every bipartite graph with vertex classes of size $n$ whose minimum degree is at least $n/2$ contains a perfect matching. We prove an analogue of this result for uniform hypergraphs. We also provide an analogue of Dirac's theorem on Hamilton cycles for $3$-uniform hypergraphs: We say that a $3$-uniform hypergraph has a Hamilton cycle if there is a cyclic ordering of its vertices such that every pair of consecutive vertices lies in a hyperedge which consists of three consecutive vertices. We prove that for every $\varepsilon > 0$ there is an $n_0$ such that every $3$-uniform hypergraph of order $n \geq n_0$ whose minimum degree is at least $n/4+ \varepsilon n$ contains a Hamilton cycle. Our bounds on the minimum degree are essentially best possible.


10.37236/6644 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Liying Kang ◽  
Lele Liu ◽  
Erfang Shan

Let $\mathcal{A}(H)$ and $\mathcal{Q}(H)$ be the adjacency tensor and signless Laplacian tensor of an $r$-uniform hypergraph $H$. Denote by $\rho(H)$ and $\rho(\mathcal{Q}(H))$ the spectral radii of $\mathcal{A}(H)$ and $\mathcal{Q}(H)$, respectively. In this paper we present a  lower bound on $\rho(H)$ in terms of vertex degrees and we characterize the extremal hypergraphs attaining the bound, which solves a problem posed by Nikiforov [Analytic methods for uniform hypergraphs, Linear Algebra Appl. 457 (2014) 455–535]. Also, we prove a lower bound on $\rho(\mathcal{Q}(H))$ concerning degrees and give a characterization of the extremal hypergraphs attaining the bound.


10.37236/390 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Artur Szymański ◽  
A. Paweł Wojda

By $K^{(k)}_n$ we denote the complete $k$-uniform hypergraph of order $n$, $1\le k \le n-1$, i.e. the hypergraph with the set $V_n=\{ 1,2,...,n\}$ of vertices and the set $V_n \choose k$ of edges. If there exists a permutation $\sigma$ of the set $V_n$ such that $\{ E,\sigma (E),..., \sigma^{q-1}(E) \}$ is a partition of the set $V_n \choose k$ then we call it cyclic $q$-partition of $K^{(k)}_n$ and $\sigma$ is said to be a $(q,k)$-complementing. In the paper, for arbitrary integers $k,q$ and $n$, we give a necessary and sufficient condition for a permutation to be $(q,k)$-complementing permutation of $K^{(k)}_n$. By $\tilde{K}_n$ we denote the hypergraph with the set of vertices $V_n$ and the set of edges $2^{V_n} - \{ \emptyset , V_n \}$. If there is a permutation $\sigma$ of $V_n$ and a set $E \subset 2^{V_n} - \{ \emptyset , V_n \}$ such that $\{ E, \sigma (E),..., \sigma^{p-1}(E) \}$ is a $p$-partition of $ 2^{V_n} - \{ \emptyset , V_n \}$ then we call it a cyclic $p$-partition of $K_n$ and we say that $\sigma$ is $p$-complementing. We prove that $\tilde{K}_n$ has a cyclic $p$-partition if and only if $p$ is prime and $n$ is a power of $p$ (and $n > p$). Moreover, any $p$-complementing permutation is cyclic.


10.37236/587 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Shonda Gosselin

For a positive integer $q$, a $k$-uniform hypergraph $X=(V,E)$ is $q$-complementary if there exists a permutation $\theta$ on $V$ such that the sets $E, E^{\theta}, E^{\theta^2},\ldots, E^{\theta^{q-1}}$ partition the set of $k$-subsets of $V$. The permutation $\theta$ is called a $q$-antimorphism of $X$. The well studied self-complementary uniform hypergraphs are 2-complementary. For an integer $n$ and a prime $p$, let $n_{(p)}=\max\{i:p^i \text{divides} n\}$. In this paper, we prove that a vertex-transitive $q$-complementary $k$-hypergraph of order $n$ exists if and only if $n^{n_{(p)}}\equiv 1 (\bmod q^{\ell+1})$ for every prime number $p$, in the case where $q$ is prime, $k = bq^\ell$ or $k=bq^{\ell}+1$ for a positive integer $b < k$, and $n\equiv 1(\bmod q^{\ell+1})$. We also find necessary conditions on the order of these structures when they are $t$-fold-transitive and $n\equiv t (\bmod q^{\ell+1})$, for $1\leq t < k$, in which case they correspond to large sets of isomorphic $t$-designs. Finally, we use group theoretic results due to Burnside and Zassenhaus to determine the complete group of automorphisms and $q$-antimorphisms of these hypergraphs in the case where they have prime order, and then use this information to write an algorithm to generate all of these objects. This work extends previous, analagous results for vertex-transitive self-complementary uniform hypergraphs due to Muzychuk, Potočnik, Šajna, and the author. These results also extend the previous work of Li and Praeger on decomposing the orbitals of a transitive permutation group.


2012 ◽  
Vol Vol. 14 no. 1 (Discrete Algorithms) ◽  
Author(s):  
Zbigniew Lonc ◽  
Pawel Naroski

Discrete Algorithms International audience By an Euler walk in a 3-uniform hypergraph H we mean an alternating sequence v(0), epsilon(1), v(1), epsilon(2), v(2), ... , v(m-1), epsilon(m), v(m) of vertices and edges in H such that each edge of H appears in this sequence exactly once and v(i-1); v(i) is an element of epsilon(i), v(i-1) not equal v(i), for every i = 1, 2, ... , m. This concept is a natural extension of the graph theoretic notion of an Euler walk to the case of 3-uniform hypergraphs. We say that a 3-uniform hypergraph H is strongly connected if it has no isolated vertices and for each two edges e and f in H there is a sequence of edges starting with e and ending with f such that each two consecutive edges in this sequence have two vertices in common. In this paper we give an algorithm that constructs an Euler walk in a strongly connected 3-uniform hypergraph (it is known that such a walk in such a hypergraph always exists). The algorithm runs in time O(m), where m is the number of edges in the input hypergraph.


10.37236/8205 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Michael Krul ◽  
Luboš Thoma

A hypergraph is properly 2-colorable if each vertex can be colored by one of two colors and no edge is completely colored by a single color. We present a complete algebraic characterization of the 2-colorability of r-uniform hypergraphs. This generalizes a well known algebraic characterization of k-colorability of graphs due to Alon, Tarsi, Lovasz, de Loera, and Hillar. We also introduce a method for distinguishing proper 2-colorings called coloring schemes, and provide a decomposition of all proper 2-colorings into these schemes. As an application, we present a new example of a 4-uniform non-2-colorable hypergraph on 11 vertices and 24 edges which is not isomorphic to a well-known construction by Seymour (1974) of a minimal non-2-colorable 4-uniform hypergraph. Additionally, we provide a heuristically constructed hypergraph which admits only specific coloring schemes. Further, we give an algebraic characterization of the coloring scheme known as a conflict-free coloring.


10.37236/716 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Deepa Sinha ◽  
Pravin Garg

A $signed graph$ (or $sigraph$ in short) is an ordered pair $S = (S^u, \sigma)$, where $S^u$ is a graph $G = (V, E)$ and $\sigma : E\rightarrow \{+,-\}$ is a function from the edge set $E$ of $S^u$ into the set $\{+, -\}$. For a positive integer $n > 1$, the unitary Cayley graph $X_n$ is the graph whose vertex set is $Z_n$, the integers modulo $n$ and if $U_n$ denotes set of all units of the ring $Z_n$, then two vertices $a, b$ are adjacent if and only if $a-b \in U_n$. For a positive integer $n > 1$, the unitary Cayley sigraph $\mathcal{S}_n = (\mathcal{S}^u_n, \sigma)$ is defined as the sigraph, where $\mathcal{S}^u_n$ is the unitary Cayley graph and for an edge $ab$ of $\mathcal{S}_n$, $$\sigma(ab) = \begin{cases} + & \text{if } a \in U_n \text{ or } b \in U_n,\\ - & \text{otherwise.} \end{cases}$$ In this paper, we have obtained a characterization of balanced unitary Cayley sigraphs. Further, we have established a characterization of canonically consistent unitary Cayley sigraphs $\mathcal{S}_n$, where $n$ has at most two distinct odd prime factors.


Sign in / Sign up

Export Citation Format

Share Document