scholarly journals Infinite Latin Squares: Neighbor Balance and Orthogonality

10.37236/8020 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Anthony B. Evans ◽  
Gage N. Martin ◽  
Kaethe Minden ◽  
M. A. Ollis

Regarding neighbor balance, we consider natural generalizations of $D$-complete Latin squares and Vatican squares from the finite to the infinite. We show that if $G$ is an infinite abelian group with $|G|$-many square elements, then it is possible to permute the rows and columns of the Cayley table to create an infinite Vatican square. We also construct a Vatican square of any given infinite order that is not obtainable by permuting the rows and columns of a Cayley table.  Regarding orthogonality, we show that every infinite group $G$ has a set of $|G|$ mutually orthogonal orthomorphisms and hence there is a set of $|G|$ mutually orthogonal Latin squares based on $G$. We show that an infinite group $G$ with $|G|$-many square elements has a strong complete mapping; and, with some possible exceptions, infinite abelian groups have a strong complete mapping.

1976 ◽  
Vol 41 (2) ◽  
pp. 391-404 ◽  
Author(s):  
J. C. E. Dekker

The main purpose of this paper is to show how partial recursive functions and isols can be used to generalize the following three well-known theorems of combinatorial theory.(I) For every finite projective plane Π there is a unique number n such that Π has exactly n2 + n + 1 points and exactly n2 + n + 1 lines.(II) Every finite projective plane of order n can be coordinatized by a finite planar ternary ring of order n. Conversely, every finite planar ternary ring of order n coordinatizes a finite projective plane of order n.(III) There exists a finite projective plane of order n if and only if there exist n − 1 mutually orthogonal Latin squares of order n.


2018 ◽  
Vol 18 (13&14) ◽  
pp. 1152-1164
Author(s):  
Xiaoya Cheng ◽  
Yun Shang

Mutually unbiased bases which is also maximally entangled bases is called mutually unbiased maximally entangled bases (MUMEBs). We study the construction of MUMEBs in bipartite system. In detail, we construct 2(p^a-1) MUMEBs in \cd by properties of Guss sums for arbitrary odd d. It improves the known lower bound p^a-1 for odd d. Certainly, it also generalizes the lower bound 2(p^a-1) for d being a single prime power. Furthermore, we construct MUMEBs in \ckd for general k\geq 2 and odd d. We get the similar lower bounds as k,b are both single prime powers. Particularly, when k is a square number, by using mutually orthogonal Latin squares, we can construct more MUMEBs in \ckd, and obtain greater lower bounds than reducing the problem into prime power dimension in some cases.


1988 ◽  
Vol 31 (4) ◽  
pp. 409-413 ◽  
Author(s):  
E. T. Parker ◽  
Lawrence Somer

AbstractLetn = 4t+- 2, where the integert ≧ 2. A necessary condition is given for a particular Latin squareLof ordernto have a complete set ofn — 2mutually orthogonal Latin squares, each orthogonal toL.This condition extends constraints due to Mann concerning the existence of a Latin square orthogonal to a given Latin square.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1895 ◽  
Author(s):  
M. Higazy ◽  
A. El-Mesady ◽  
M. S. Mohamed

During the last two centuries, after the question asked by Euler concerning mutually orthogonal Latin squares (MOLS), essential advances have been made. MOLS are considered as a construction tool for orthogonal arrays. Although Latin squares have numerous helpful properties, for some factual applications these structures are excessively prohibitive. The more general concepts of graph squares and mutually orthogonal graph squares (MOGS) offer more flexibility. MOGS generalize MOLS in an interesting way. As such, the topic is attractive. Orthogonal arrays are essential in statistics and are related to finite fields, geometry, combinatorics and error-correcting codes. Furthermore, they are used in cryptography and computer science. In this paper, our current efforts have concentrated on the definition of the graph-orthogonal arrays and on proving that if there are k MOGS of order n, then there is a graph-orthogonal array, and we denote this array by G-OA(n2,k,n,2). In addition, several new results for the orthogonal arrays obtained from the MOGS are given. Furthermore, we introduce a recursive construction method for constructing the graph-orthogonal arrays.


2004 ◽  
Vol 12 (2) ◽  
pp. 123-131 ◽  
Author(s):  
R. Julian R. Abel ◽  
Charles J. Colbourn ◽  
Mieczyslaw Wojtas

Sign in / Sign up

Export Citation Format

Share Document