scholarly journals Enumerating Parking Completions Using Join and Split

10.37236/9194 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Ayomikun Adeniran ◽  
Steve Butler ◽  
Galen Dorpalen-Barry ◽  
Pamela E. Harris ◽  
Cyrus Hettle ◽  
...  

Given a strictly increasing sequence $\mathbf{t}$ with entries from $[n]:=\{1,\ldots,n\}$, a parking completion is a sequence $\mathbf{c}$ with $|\mathbf{t}|+|\mathbf{c}|=n$ and $|\{t\in \mathbf{t}\mid t\leqslant i\}|+|\{c\in \mathbf{c}\mid c\leqslant i\}|\geqslant i$ for all $i$ in $[n]$.  We can think of $\mathbf{t}$ as a list of spots already taken in a street with $n$ parking spots and $\mathbf{c}$ as a list of parking preferences where the $i$-th car attempts to park in the $c_i$-th spot and if not available then proceeds up the street to find the next available spot, if any.  A parking completion corresponds to a set of preferences $\mathbf{c}$ where all cars park. We relate parking completions to enumerating restricted lattice paths and give formulas for both the ordered and unordered variations of the problem by use of a pair of operations termed Join and Split.  Our results give a new volume formula for most Pitman-Stanley polytopes, and enumerate the \emph{signature parking functions} of Ceballos and González D'León.


2009 ◽  
Vol 43 (2) ◽  
pp. 197-198
Author(s):  
Joseph P.S. Kung ◽  
Xinyu Sun ◽  
Catherine Yan


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Robin Sulzgruber ◽  
Marko Thiel

International audience We introduce type $C$ parking functions, encoded as vertically labelled lattice paths and endowed with a statistic dinv'. We define a bijection from type $C$ parking functions to regions of the Shi arrangement of type $C$, encoded as diagonally labelled ballot paths and endowed with a natural statistic area'. This bijection is a natural analogue of the zeta map of Haglund and Loehr and maps dinv' to area'. We give three different descriptions of it. Nous introduisons les fonctions de stationnement de type $C$, encodées par des chemins étiquetés verticalement et munies d’une statistique dinv'. Nous définissons une bijection entre les fonctions de stationnement de type $C$ et les régions de l’arrangement de Shi de type $C$, encodées par des chemins étiquetés diagonalement et munies d’une statistique naturelle area'. Cette bijection est un analogue naturel à la fonction zeta de Haglund et Loehr, et envoie dinv' sur area'. Nous donnons trois différentes descriptions de celle-ci.



10.37236/6714 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Robin Sulzgruber ◽  
Marko Thiel

Let $\Phi$ be an irreducible crystallographic root system with Weyl group $W$, coroot lattice $\check{Q}$ and Coxeter number $h$. Recently the second named author defined a uniform $W$-isomorphism $\zeta$ between the finite torus $\check{Q}/(mh+1)\check{Q}$ and the set of non-nesting parking functions $\operatorname{Park}^{(m)}(\Phi)$. If $\Phi$ is of type $A_{n-1}$ and $m=1$ this map is equivalent to a map defined on labelled Dyck paths that arises in the study of the Hilbert series of the space of diagonal harmonics. In this paper we investigate the case $m=1$ for the other infinite families of root systems ($B_n$, $C_n$ and $D_n$). In each type we define models for the finite torus and for the set of non-nesting parking functions in terms of labelled lattice paths. The map $\zeta$ can then be viewed as a map between these combinatorial objects. Our work entails new bijections between (square) lattice paths and ballot paths.



10.37236/1821 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicholas A. Loehr ◽  
Jeffrey B. Remmel

Haglund and Loehr previously conjectured two equivalent combinatorial formulas for the Hilbert series of the Garsia-Haiman diagonal harmonics modules. These formulas involve weighted sums of labelled Dyck paths (or parking functions) relative to suitable statistics. This article introduces a third combinatorial formula that is shown to be equivalent to the first two. We show that the four statistics on labelled Dyck paths appearing in these formulas all have the same univariate distribution, which settles an earlier question of Haglund and Loehr. We then introduce analogous statistics on other collections of labelled lattice paths contained in trapezoids. We obtain a fermionic formula for the generating function for these statistics. We give bijective proofs of the equivalence of several forms of this generating function. These bijections imply that all the new statistics have the same univariate distribution. Using these new statistics, we conjecture combinatorial formulas for the Hilbert series of certain generalizations of the diagonal harmonics modules.



2007 ◽  
Vol 39 (4) ◽  
pp. 515-524 ◽  
Author(s):  
Joseph P.S. Kung ◽  
Xinyu Sun ◽  
Catherine Yan


2020 ◽  
Vol 6 (2) ◽  
pp. 147-153
Author(s):  
Muhamad Yusup ◽  
Po. Abas Sunarya ◽  
Krisandi Aprilyanto

System The process of counting and storing in a manual water reservoir analysis has a high percentage of error rate compared to an automated system. In a company industry, especially in the WWT (Waste Water Treatment) section, it has several reservoir tanks as stock which are still counted manually. The ultrasonic sensor is placed at the top of the WWT tank in a hanging position. Basically, to measure the volume in a tank only variable height is always changing. So by utilizing the function of the ultrasonic sensor and also the tube volume formula, the stored AIR volume can be monitored in real time based on IoT using the Blynk application. From the sensor, height data is obtained which then the formula is processed by Arduino Wemos and then information is sent to the MySQL database server via the WIFI network.



Author(s):  
Kazutoshi Ohta ◽  
Norisuke Sakai

Abstract We study the moduli space volume of BPS vortices in quiver gauge theories on compact Riemann surfaces. The existence of BPS vortices imposes constraints on the quiver gauge theories. We show that the moduli space volume is given by a vev of a suitable cohomological operator (volume operator) in a supersymmetric quiver gauge theory, where BPS equations of the vortices are embedded. In the supersymmetric gauge theory, the moduli space volume is exactly evaluated as a contour integral by using the localization. Graph theory is useful to construct the supersymmetric quiver gauge theory and to derive the volume formula. The contour integral formula of the volume (generalization of the Jeffrey-Kirwan residue formula) leads to the Bradlow bounds (upper bounds on the vorticity by the area of the Riemann surface divided by the intrinsic size of the vortex). We give some examples of various quiver gauge theories and discuss properties of the moduli space volume in these theories. Our formula are applied to the volume of the vortex moduli space in the gauged non-linear sigma model with CPN target space, which is obtained by a strong coupling limit of a parent quiver gauge theory. We also discuss a non-Abelian generalization of the quiver gauge theory and “Abelianization” of the volume formula.



2021 ◽  
Vol 94 ◽  
pp. 103310
Author(s):  
Nancy S.S. Gu ◽  
Helmut Prodinger
Keyword(s):  


2014 ◽  
Vol 337 ◽  
pp. 9-24 ◽  
Author(s):  
M. Dziemiańczuk


Sign in / Sign up

Export Citation Format

Share Document