scholarly journals Combinatorial Game Distributions of Steiner Systems

10.37236/9252 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Yuki Irie

The $P$-position sets of some combinatorial games have special combinatorial structures. For example, the $P$-position set of the hexad game, first investigated by Conway and Ryba, is the block set of the Steiner system $S(5, 6, 12)$ in the shuffle numbering, denoted by $D_{\text{sh}}$. However, few games were known to be related to Steiner systems in this way. For a given Steiner system, we construct a game whose $P$-position set is its block set. By using constructed games, we obtain the following two results. First, we characterize $D_{\text{sh}}$ among the 5040 isomorphic $S(5, 6, 12)$ with point set $\{0, 1, ..., 11\}$. For each $S(5, 6, 12)$, our construction produces a game whose $P$-position set is its block set. From $D_{\text{sh}}$, we obtain the hexad game, and this game is characterized as the unique game with the minimum number of positions among the obtained 5040 games. Second, we characterize projective Steiner triple systems by using game distributions. Here, the game distribution of a Steiner system $D$ is the frequency distribution of the numbers of positions in games obtained from Steiner systems isomorphic to $D$. We find that the game distribution of an $S(t, t + 1, v)$ can be decomposed into symmetric components and that a Steiner triple system is projective if and only if its game distribution has a unique symmetric component.

2010 ◽  
Vol 62 (2) ◽  
pp. 355-381 ◽  
Author(s):  
Daniel Král’ ◽  
Edita Máčajov´ ◽  
Attila Pór ◽  
Jean-Sébastien Sereni

AbstractIt is known that a Steiner triple system is projective if and only if it does not contain the four-triple configuration C14. We find three configurations such that a Steiner triple system is affine if and only if it does not contain one of these configurations. Similarly, we characterise Hall triple systems using two forbidden configurations.Our characterisations have several interesting corollaries in the area of edge-colourings of graphs. A cubic graph G is S-edge-colourable for a Steiner triple system S if its edges can be coloured with points of S in such a way that the points assigned to three edges sharing a vertex form a triple in S. Among others, we show that all cubic graphs are S-edge-colourable for every non-projective nonaffine point-transitive Steiner triple system S.


1981 ◽  
Vol 33 (6) ◽  
pp. 1365-1369 ◽  
Author(s):  
K. T. Phelps

A Steiner system S(t, k, v) is a pair (P, B) where P is a v-set and B is a collection of k-subsets of P (usually called blocks) such that every t-subset of P is contained in exactly one block of B. As is well known, associated with each point x ∈ P is a S(t � 1, k � 1, v � 1) defined on the set Px = P\{x} with blocksB(x) = {b\{x}|x ∈ b and b ∈ B}.The Steiner system (Px, B(x)) is said to be derived from (P, B) and is called (obviously) a derived Steiner (t – 1, k – 1)-system. Very little is known about derived Steiner systems despite much effort (cf. [11]). It is not even known whether every Steiner triple system is derived.Steiner systems are closely connected to equational classes of algebras (see [7]) for certain values of k.


Author(s):  
Alan R. Prince

SynopsisA standard method of constructing Steiner triple systems of order 19 from the Steiner triple system of order 9 gives rise to 212 different such systems. It is shown that there are just three isomorphism classes amongst these systems. Representatives of each isomorphism class are described and the orders of their automorphism groups are determined.


1974 ◽  
Vol 26 (1) ◽  
pp. 225-232 ◽  
Author(s):  
Charles C. Lindner

A Steiner triple system is a pair (Q, t) where Q is a set and t a collection of three element subsets of Q such that each pair of elements of Q belong to exactly one triple of t. The number |Q| is called the order of the Steiner triple system (Q, t). It is well-known that there is a Steiner triple system of order n if and only if n ≡ 1 or 3 (mod 6). Therefore in saying that a certain property concerning Steiner triple systems is true for all n it is understood that n ≡ 1 or 3 (mod 6). Two Steiner triple systems (Q, t1) and (Q, t2) are said to be disjoint provided that t1 ∩ t2 = Ø. Recently, Jean Doyen has shown the existence of a pair of disjoint Steiner triple systems of order n for every n ≧ 7 [1].


2009 ◽  
Vol 59 (1) ◽  
Author(s):  
Charles Colbourn

AbstractIt has been shown that the number of occurrences of any ℓ-line configuration in a Steiner triple system can be written as a linear combination of the numbers of full m-line configurations for 1 ≤ m ≤ ℓ; full means that every point has degree at least two. More precisely, the coefficients of the linear combination are ratios of polynomials in v, the order of the Steiner triple system. Moreover, the counts of full configurations, together with v, form a linear basis for all of the configuration counts when ℓ ≤ 7. By relaxing the linear integer equalities to fractional inequalities, a configuration polytope is defined that captures all feasible assignments of counts to the full configurations. An effective procedure for determining this polytope is developed and applied when ℓ = 6. Using this, minimum and maximum counts of each configuration are examined, and consequences for the simultaneous avoidance of sets of configurations explored.


1975 ◽  
Vol 27 (2) ◽  
pp. 256-260 ◽  
Author(s):  
C. C. Lindner ◽  
A. Rosa

A Steiner triple system (briefly STS) is a pair (S, t) where S is a set and t is a collection of 3-subsets of S (called triples) such that every 2-subset of S is contained in exactly one triple of t. The number |S| is called the order of the STS (S, t). It is well-known that there is an STS of order v if and only if v = 1 or 3 (mod 6). Therefore in saying that a certain property concerning STS is true for all v it is understood that v = 1 or 3 (mod 6).


1976 ◽  
Vol 28 (6) ◽  
pp. 1187-1198 ◽  
Author(s):  
Robert W. Quackenbush

A Steiner Triple System (STS) is a pair (P, B) where P is a set of points and B is a set of 3-elenient subsets of P called blocks (or triples) such that for distinct p, q ∈ P there is a unique block b ∈ B with ﹛p, q) ⊂ b. There are two well-known methods for turning Steiner Triple Systems into algebras; both methods are due to R. H. Bruck [1]. Each method gives rise to a variety of algebras; in this paper we will study these varieties.


10.37236/1203 ◽  
1995 ◽  
Vol 2 (1) ◽  
Author(s):  
E. F. Assmus Jr.

Our main result is an existence and uniqueness theorem for Steiner triple systems which associates to every such system a binary code — called the "carrier" — which depends only on the order of the system and its 2-rank. When the Steiner triple system is of 2-rank less than the number of points of the system, the carrier organizes all the information necessary to construct directly all systems of the given order and $2$-rank from Steiner triple systems of a specified smaller order. The carriers are an easily understood, two-parameter family of binary codes related to the Hamming codes. We also discuss Steiner quadruple systems and prove an analogous existence and uniqueness theorem; in this case the binary code (corresponding to the carrier in the triple system case) is the dual of the code obtained from a first-order Reed-Muller code by repeating it a certain specified number of times. Some particularly intriguing possible enumerations and some general open problems are discussed. We also present applications of this coding-theoretic classification to the theory of triple and quadruple systems giving, for example, a direct proof of the fact that all triple systems are derived provided those of full 2-rank are and showing that whenever there are resolvable quadruple systems on $u$ and on $v$ points there is a resolvable quadruple system on $uv$ points. The methods used in both the classification and the applications make it abundantly clear why the number of triple and quadruple systems grows in such a staggering way and why a triple system that extends to a quadruple system has, generally, many such extensions.


10.37236/1457 ◽  
1999 ◽  
Vol 6 (1) ◽  
Author(s):  
Charles J. Colbourn ◽  
Jeffrey H. Dinitz ◽  
Alexander Rosa

A Steiner triple system has a bicoloring with $m$ color classes if the points are partitioned into $m$ subsets and the three points in every block are contained in exactly two of the color classes. In this paper we give necessary conditions for the existence of a bicoloring with 3 color classes and give a multiplication theorem for Steiner triple systems with 3 color classes. We also examine bicolorings with more than 3 color classes.


2019 ◽  
Vol 20 (02) ◽  
pp. 2050010
Author(s):  
Silvia Barbina ◽  
Enrique Casanovas

A Steiner triple system (STS) is a set [Formula: see text] together with a collection [Formula: see text] of subsets of [Formula: see text] of size 3 such that any two elements of [Formula: see text] belong to exactly one element of [Formula: see text]. It is well known that the class of finite STS has a Fraïssé limit [Formula: see text]. Here, we show that the theory [Formula: see text] of [Formula: see text] is the model completion of the theory of STSs. We also prove that [Formula: see text] is not small and it has quantifier elimination, [Formula: see text], [Formula: see text], elimination of hyperimaginaries and weak elimination of imaginaries.


Sign in / Sign up

Export Citation Format

Share Document