line configuration
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 31)

H-INDEX

20
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4311
Author(s):  
Mirza Rustum Baig ◽  
Aqdar A. Akbar ◽  
Munira Embaireeg

A polymer-infiltrated ceramic network (PICN) material has recently been introduced for dental use and evidence is developing regarding the fit accuracy of such crowns with different preparation designs. The aim of this in vitro study was to evaluate the precision of fit of machined monolithic PICN single crowns in comparison to lithium disilicate crowns in terms of marginal gap, internal gap, and absolute marginal discrepancies. A secondary aim was to assess the effect of finish line configuration on the fit accuracy of crowns made from the two materials. Two master metal dies were used to create forty stone dies, with twenty each for the two finish lines, shoulder and chamfer. The stone dies were scanned to produce virtual models, on which ceramic crowns were designed and milled, with ten each for the four material–finish line combinations (n = 10). Marginal gaps and absolute marginal discrepancies were evaluated at six pre-determined margin locations, and the internal gap was measured at 60 designated points using a stereomicroscope-based digital image analysis system. The influence of the material and finish line on the marginal and internal adaptation of crowns was assessed by analyzing the data using two-way analysis of variance (ANOVA), non-parametric, and Bonferroni multiple comparison post-hoc tests (α = 0.05). ANOVA revealed that the differences in the marginal gaps and the absolute marginal discrepancies between the two materials were significant (p < 0.05), but that those the finish line effect and the interaction were not significant (p > 0.05). Using the Mann–Whitney U test, the differences in IG for ‘material’ and ‘finish line’ were not found to be significant (p > 0.05). In conclusion, the finish line configuration did not seem to affect the marginal and internal adaptation of PICN and lithium disilicate crowns. The marginal gap of PICN crowns was below the clinically acceptable threshold of 120 µm.


2021 ◽  
Author(s):  
◽  
Jasmine Hall

<p>The algebra of throws is a geometric construction which reveals the underlying algebraic operations of addition and multiplication in a projective plane. In Desarguesian projective planes, the algebra of throws is a well-defined, commutative and associative binary operation. However, when we consider an analogous operation in a more general point-line configuration that comes from rank-3 matroids, none of these properties are guaranteed. We construct lists of forbidden configurations which give polynomial time checks for certain properties. Using these forbidden configurations, we can check whether a configuration has a group structure under this analogous operation. We look at the properties of configurations with such a group structure, and discuss their connection to the jointless Dowling geometries.</p>


2021 ◽  
Author(s):  
◽  
Jasmine Hall

<p>The algebra of throws is a geometric construction which reveals the underlying algebraic operations of addition and multiplication in a projective plane. In Desarguesian projective planes, the algebra of throws is a well-defined, commutative and associative binary operation. However, when we consider an analogous operation in a more general point-line configuration that comes from rank-3 matroids, none of these properties are guaranteed. We construct lists of forbidden configurations which give polynomial time checks for certain properties. Using these forbidden configurations, we can check whether a configuration has a group structure under this analogous operation. We look at the properties of configurations with such a group structure, and discuss their connection to the jointless Dowling geometries.</p>


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7366
Author(s):  
Yuchang Won ◽  
Seunghyeon Kim ◽  
Kyung-Joon Park ◽  
Yongsoon Eun

This paper presents a case study of continuous productivity improvement of an automotive parts production line using Internet of Everything (IoE) data for fault monitoring. Continuous productivity improvement denotes an iterative process of analyzing and updating the production line configuration for productivity improvement based on measured data. Analysis for continuous improvement of a production system requires a set of data (machine uptime, downtime, cycle-time) that are not typically monitored by a conventional fault monitoring system. Although productivity improvement is a critical aspect for a manufacturing site, not many production systems are equipped with a dedicated data recording system towards continuous improvement. In this paper, we study the problem of how to derive the dataset required for continuous improvement from the measurement by a conventional fault monitoring system. In particular, we provide a case study of an automotive parts production line. Based on the data measured by the existing fault monitoring system, we model the production system and derive the dataset required for continuous improvement. Our approach provides the expected amount of improvement to operation managers in a numerical manner to help them make a decision on whether they should modify the line configuration or not.


Author(s):  
Fandi Achmadi ◽  
Budi Harsanto ◽  
Akhmad Yunani

This paper aims to analyze the cycle time of the assembly line of one of the weapons products at PT. Pindad (Persero) and to explore the effective methods to improve its performance. The method used is a quantitative analysis of assembly data involving 155 components and 56 tasks distributed over 43 work stations, accompanied by document analysis, especially on scientific literature, to elaborate various appropriate methods to become solutions to the problems encountered. The results show that almost all workstations had a cycle time greater than the takt time. It is also known that there is an imbalance of existing workstations, with the lightest workload lasting 67 seconds while the largest workload lasting 253 seconds. The results of the elaboration of the literature show that several potential methods can provide solutions to the problems encountered by considering the characteristics of the assembly line with a straight-line configuration. This study contributes to the literature by analyzing cycle times and assembly line balances in the defense industry relatively rarely studied in Indonesia. 


Author(s):  
Zainal Arifin ◽  
Dominicus Danardono Dwi Prija Tjahjana ◽  
Suyitno Suyitno ◽  
Wibawa Endra Juwana ◽  
Rendhy Adhi Rachmanto ◽  
...  

Wind energy sources must be investigated to produce electrical energy from a renewable source. Crossflow wind turbines are suitable for use because they have several advantages such as self-starting ability, low noise, and excellent stability. They have the potential to be applied as small wind turbines in urban districts because of their small maximum coefficient of power (Cp), which is 10% of that of other small wind turbines. To enhance the performance of crossflow wind turbines, we changed the turbine to rotate in the opposite direction in the in-line configuration. Turbine performance testing was tested using a wind tunnel. The characteristics of crossflow wind turbines were investigated, then turbine performance was analyzed and discussed. The maximum power coefficient obtained was 0.169 (Cp) with the configuration of 12 turbine blades at a wind speed of 10 m/s. The maximum torque coefficient obtained was 0.703. The overall results show that the crossflow wind turbine in in-line configuration with opposite rotation can improve the performance of wind turbines.


Sign in / Sign up

Export Citation Format

Share Document