Human umbilical cord mesenchymal stromal cells promote the regeneration of severe endometrial damage in a rat model

Author(s):  
Mei Zhuang ◽  
Wuwen Zhang ◽  
Nuo Cheng ◽  
Ling Zhou ◽  
Dan Liu ◽  
...  
2013 ◽  
Vol 03 (03) ◽  
pp. 155-163 ◽  
Author(s):  
Sachiko Takikawa ◽  
Akihito Yamamoto ◽  
Kiyoshi Sakai ◽  
Ryutaro Shohara ◽  
Akira Iwase ◽  
...  

Author(s):  
G. T. Sukhikh ◽  
A. V. Degtyareva ◽  
D. N. Silachev ◽  
K. V. Gorunov ◽  
I. V. Dubrovina ◽  
...  

The article presents the results of intravenous transplantation of allogeneic multipotent mesenchymal stromal cells, derived from a human umbilical cord, to a child with Crigler–Najjarsyndrome type I during the first 2 years of life. The therapy is aimed at reduction of the duration of phototherapy while maintaining a safe level of serum bilirubin.In this study, a five-day-old child with the bilirubin level of 340 µmol/l was treated with phototherapy for 16–18 hours daily in the neonatal period. Then, phototherapy was reduced to 14–16 hours. The level of bilirubin varied from 329 to 407 μmol/l. At the age of 2 months, it was decided to use multipotent mesenchymal stromal cells with a significant decrease in the duration of phototherapy up to 2 hours a day. During the observation period (2 years at the time of writing this article) the child received 6 injections of multipotent mesenchymal stromal cells. A positive effect developed within 4–7 days after administration and persisted for 2–3 months. There were no side effects or complications during and after transplantation.Thus, intravenous transplantation of multipotent mesenchymal stromal cells is an effective treatment of Crigler–Najjar syndrome type I; it reducesthe need for phototherapy,significantly improvesthe quality of life of the patients and prolongstheir life with native liver. 


Cytotherapy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. S111-S112
Author(s):  
R. Wagey ◽  
K. Bertram ◽  
M. Elliott ◽  
A. Eaves ◽  
S. Szilvassy ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Anton Selich ◽  
Katharina Zimmermann ◽  
Michel Tenspolde ◽  
Oliver Dittrich-Breiholz ◽  
Constantin von Kaisenberg ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) are used in over 800 clinical trials mainly due to their immune inhibitory activity. Umbilical cord (UC), the second leading source of clinically used MSCs, is usually cut in small tissue pieces. Subsequent cultivation leads to a continuous outgrowth of MSC explant monolayers (MSC-EMs) for months. Currently, the first MSC-EM culture takes approximately 2 weeks to grow out, which is then expanded and applied to patients. The initiating tissue pieces are then discarded. However, when UC pieces are transferred to new culture dishes, MSC-EMs continue to grow out. In case the functional integrity of these cells is maintained, later induced cultures could also be expanded and used for cell therapy. This would drastically increase the number of available cells for each patient. To test the functionality of MSC-EMs from early and late induction time points, we compared the first cultures to those initiated after 2 months by investigating their clonality and immunomodulatory capacity. Methods We analyzed the clonal composition of MSC-EM cultures by umbilical cord piece transduction using integrating lentiviral vectors harboring genetic barcodes assessed by high-throughput sequencing. We investigated the transcriptome of these cultures by microarrays. Finally, the secretome was analyzed by multiplexed ELISAs, in vitro assays, and in vivo in mice. Results DNA barcode analysis showed polyclonal MSC-EMs even after months of induction cycles. A transcriptome and secretome analyses of early and late MSC cultures showed only minor changes over time. However, upon activation with TNF-α and IFN-γ, cells from both induction time points produced a multitude of immunomodulatory cytokines. Interestingly, the later induced MSC-EMs produced higher amounts of cytokines. To test whether the different cytokine levels were in a therapeutically relevant range, we used conditioned medium (CM) in an in vitro MLR and an in vivo killing assay. CM from late induced MSC-EMs was at least as immune inhibitory as CM from early induced MSC-EMs. Conclusion Human umbilical cord maintains a microenvironment for the long-term induction of polyclonal and immune inhibitory active MSCs for months. Thus, our results would offer the possibility to drastically increase the number of therapeutically applicable MSCs for a substantial amount of patients.


Sign in / Sign up

Export Citation Format

Share Document