Diversity and plant growth promoting activities of the cultivable rhizo-bacteria of Dongxiang wild rice (Oryza rufipogon)

2011 ◽  
Vol 19 (4) ◽  
pp. 476-484 ◽  
Author(s):  
Luo Fei ◽  
Wang Ya ◽  
Zeng Qinggui ◽  
Yan Riming ◽  
Zhang Zhibin ◽  
...  
2011 ◽  
Vol 108 ◽  
pp. 167-175 ◽  
Author(s):  
Qing Gui Zeng ◽  
Fei Luo ◽  
Zhi Bin Zhang ◽  
Ri Ming Yan ◽  
Du Zhu

The capability of bacterial strain T21 isolated from Dongxiang wild rice (Oryza rufipogon) rhizosphere to behave as plant growth promoting bacteria (PGPB) was investigated. Rhizosphere bacteria T21 showed P-solubilizing capability when cultured in the PVK medium amended with tricalcium phosphate. The strain T21 also showed nitrogen-fixing activity in N-free medium, and produced indole-3-acetic (IAA) and siderophore. The strain T21 was identified as Pantoea agglomerans by morphology, physiological and biochemical properties, and 16S rDNA sequence analysis. The strain T21 was formulated as an inoculant in order to evaluate its growth promotion effect in the field when applied on the cultivated rice at the sowing time. It showed a significant plant growth-promoting effect on seedling length, root length, fresh weight and dry weight of the cultivated rice (Oryza sativa). These findings fetched us to conclude that wild rice rhizospheric microorganism Pantoea agglomerans T21 could stimulate the growth of cultivated rice in vivo in poor soil.


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 665
Author(s):  
Zhibin Zhang ◽  
Tingting Liu ◽  
Xiao Zhang ◽  
Jing Xie ◽  
Ya Wang ◽  
...  

Dongxiang wild rice (Oryza rufipogon Griff.) germplasm is a precious resource for the improvement of agronomic traits in rice. Rice seeds also harbor a diverse endophytic bacterial community, and their interactions with their hosts and each other can influence plant growth and adaptability. Here, we investigated the community composition of cultivable endophytic bacteria obtained from the surface-sterilized seeds of Dongxiang wild rice and screened them for plant growth-promoting traits. Phylogenetic analysis of 16S rRNA gene sequences indicated that the 47 isolates were affiliated with five classes and 13 discrete genera, and Bacillus and Microbacterium predominated. Evaluations of plant growth promoting (PGP) traits showed that 45 endophytic bacteria isolates produced between 3.37 and 90.11 μg mL−1 of Indole-3-acetic acid (IAA), with the highest yield of 90.11 μg mL−1 (Fse28). Further, 37 of the isolates were able to solubilize mineral phosphate, while 28 other isolates had the ability of N2-fixation, 17 isolates possessed 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity with the highest yield of 20.72 μmol mg−1 protein h−1 (Fse35), and 17 isolates were also able to produce siderophores. The two strains Fse28 and Fse35 had multiple PGP traits that significantly improved the agronomic traits (root length, shoot length, dry matter, and chlorophyll content) of cultivated rice seedlings. Our results illustrate the rich diversity of seed endophytic bacteria in Dongxiang wild rice and their potential for developing novel efficient bioinoculants to enhance soil fertility and favor seedling growth.


2009 ◽  
Vol 329 (1-2) ◽  
pp. 421-431 ◽  
Author(s):  
Tania Taurian ◽  
María Soledad Anzuay ◽  
Jorge Guillermo Angelini ◽  
María Laura Tonelli ◽  
Liliana Ludueña ◽  
...  

Author(s):  
Cun Yu ◽  
Ying Yao

Endophytic fungi were isolated from Phoebe bournei and their diversity and antimicrobial and plant growth-promoting activities were investigated. Of the 389 isolated endophytic fungi, 88.90% belonged to phylum Ascomycota and 11.10% to phylum Basidiomycota. The isolates were grouped into four taxonomic classes, 11 orders, 30 genera, and 45 species based on internal transcribed spacer sequencing and morphologic analysis. The host showed a strong affinity for the genera Diaporthe and Phyllosticta. The diversity of the fungi was highest in autumn, followed by spring and summer, and was lowest in winter. The fungi exhibited notable tissue specificity in P. bournei, and the species richness and diversity were highest in the root across all seasons. Five isolates showed antimicrobial activity against eight plant pathogens, and reduced the incidence of leaf spot disease in P. bournei. Additionally, 9 biocontrol isolates showed plant growth-promoting activity, with five significantly promoting P. bournei seedling growth. This is the first report on the endophytic fungi of P. bournei and their potential applicability to plant disease control and growth promotion.


Sign in / Sign up

Export Citation Format

Share Document