pantoea agglomerans
Recently Published Documents


TOTAL DOCUMENTS

439
(FIVE YEARS 117)

H-INDEX

39
(FIVE YEARS 4)

Plant Disease ◽  
2022 ◽  
Author(s):  
Susu Fan ◽  
Fangyuan Zhou ◽  
Xueying Xie ◽  
Xinjian Zhang ◽  
Tielin Wang

Chinese yam (Dioscorea opposita Thunb.), which belongs to the family of Dioscorea, is widely naturalized throughout China, due to its high economic and medicinal value. Since 2019, water-soaked lesions were frequently observed in the underground tubers of Chinese yam located in Xinyang City, Henan Province. To identify the causal agent, ten pieces of tissue from the underground tubers with disease symptoms were collected. Those infected tissues (5×5 mm) were crushed in 500 μL sterilized water after surface sterilization and streaked onto Luria-Bertani agar plates. Pale-yellowish, rod-shaped, slimy single bacterial colonies with smooth margin were observed after 24 hours of incubation, and three bacterial colonies (named CY-1, CY-2 and CY-3) were randomly selected for further biochemical and molecular characterization. These bacteria were gram-negative with the cell length of 1.0 to 3.0 μm, width of 0.5 to 1.0 μm, and with peritrichous flagella. Subsequently, the bacteria were biochemically analyzed through BIOLOG (Hayward, CA) and identified as Pantoea agglomerans with 99% probability. Furthermore, the phylogenetic analysis results based on 16S rDNA, DNA gyrase subunit B (gyrB), and RNA polymerase sigma factor (rpoD) showed these three isolates were most closely related to P. agglomerans. The sequence of 16S rDNA, gyrB and rpoD of each strain was submitted to GenBank with the accession numbers MZ541065 MZ541066 and MZ541067 for 16S rDNA; MZ669846, MZ669847 and MZ669848 for gyrB; MZ669849, MZ669850 and MZ669851 for ropD. Pathogenicity test was performed to complete Koch’s postulates. Tubers of Chinese yam were wounded by sterile needle and inoculated with 500 μL 108 CFU/mL bacterial suspension. Sterilized water was used as a control. Five pots were inoculated for each isolate. Water-soaked lesions appeared after five days incubation at 25°C in a biochemical incubator and no lesions were observed on the control. Bacteria re-isolated from the lesions were similar in phenotypic and molecular characteristics to the original isolates. In brief, based on colony morphology, biochemical tests, characteristic sequence analysis, and pathogenicity verification, the pathogen responsible for the soft rot of Chinese yam in Henan Province was identified as P. agglomerans. In China, P. agglomerans has been reported to associate with bacterial soft rot on Chinese cabbage (Guo et al., 2020). To our knowledge, this work is the first report of bacterial rot caused by P. agglomerans on Chinese yam.


2022 ◽  
Author(s):  
Fangyuan Xu ◽  
Liqiang Liu ◽  
Jun Liu ◽  
Wei He ◽  
Kang Liao

Abstract Wild apricot in Yili wild fruit forest in Xinjiang have been seriously affected by leaf spot-hole disease, with the incidence reaching 100%. To identify the pathogen of apricot perforation in the Yili wild fruit forest, two bacterial strains with strong virulence were obtained by the dilution separation method. The bacterial strains were gram-negative bacteria with yellow colonies, smooth surfaces and neat edges. The results of the pathogenicity test showed that the bacteria could cause symptoms of leaf spot-hole disease in wild apricot, similar to the symptoms in the field, and could cause HR in tobacco. Based on the 16S rDNA gene sequence and multilocus sequence analysis of fusA, gyrB, leuS, pyrG, rpoB and rlpB, combined with the physiological and biochemical characteristics, the isolated strain was identified as Pantoea agglomerans. The pathogen causing bacterial leaf spot-hole disease in wild apricot was determined to be P. agglomerans in the wild fruit forest of Yili, Xinjiang. The whole genome of the pathogen strain GL9-2 was sequenced based on the Illumina HiSeq500 and PacBio RS platforms. The genome size was 4765392 bp, and the G+C value was 55.27%. There was one chromosome and two plasmids in the genome, and 4353 CDs were identified. The annotation results showed that 52 glycoside hydrolase-related genes, 38 bacterial secretory system-related genes and 600 toxin-related genes were predicted.


Author(s):  
Tuğba AYHANCI ◽  
Radhwan ABDULRAZZAQ KHALEEL KHALEEL ◽  
Peruze AYDIN ◽  
Tayfur DEMİRAY ◽  
Özlem AYDEMİR ◽  
...  

2021 ◽  
Author(s):  
Andrea Carobbi ◽  
Simone Di Nepi ◽  
Chaya M. Fridman ◽  
Yasmin Dar ◽  
Rotem Ben-Yaakov ◽  
...  

ABSTRACTThe type VI secretion system (T6SS) is deployed by numerous Gram-negative bacteria to deliver toxic effectors into neighboring cells. The genome of Pantoea agglomerans pv. betae (Pab) phytopathogenic bacteria contains a gene cluster (T6SS1) predicted to encode a complete T6SS. Using secretion and competition assays, we found that T6SS1 in Pab is a functional antibacterial system that allows this pathogen to outcompete rival plant-associated bacteria found in its natural environment. Computational analysis of the T6SS1 gene cluster revealed that antibacterial effector and immunity proteins are encoded within three dynamic genomic islands that harbor arrays of orphan immunity genes or toxin and immunity cassettes. Functional analysis demonstrated that the specialized antibacterial effector VgrG contains a C-terminal catalytically active glucosaminidase domain that is used to degrade prey peptidoglycan. Moreover, we confirmed that a bicistronic unit at the end of the T6SS1 cluster encodes a novel antibacterial T6SS effector and immunity pair. Together, these results demonstrate that Pab T6SS1 is an antibacterial system delivering a lysozyme-like effector to eliminate competitors, and indicate that this bacterium contains novel T6SS effectors.Significance StatementIn this work, we describe the identification of a Pantoea agglomerans T6SS as an antibacterial determinant used by this phytopathogen to outcompete bacterial rivals. Furthermore, we provide an in-depth analysis of the T6SS gene cluster and the putative effector and immunity genes that comprise it, and we propose explanations for its dynamic evolution and effector diversification in Pantoea strains. Lastly, we experimentally validate two predicted effector and immunity pairs, and we demonstrate that one is a potent lysozyme-like toxin.


2021 ◽  
Vol 116 (1) ◽  
pp. S1110-S1110
Author(s):  
Asad Ahmed ◽  
Jonathan Reyes ◽  
Salman Syed ◽  
Tasur Seen ◽  
Sowmya Kalava

2021 ◽  
Author(s):  
Jianjun Wang ◽  
Taixiang Chen ◽  
Longhai Xue ◽  
Xuekai Wei ◽  
James F. White ◽  
...  

2021 ◽  
Author(s):  
Jing Lu ◽  
Ziqin Li ◽  
Hui Yang ◽  
Qiang Zhang ◽  
wenting Jia

Abstract The effect of N-acyl-homoserine lactone (AHL)-based quorum sensing (QS) on biogenic amine (BA) formation by Pantoea agglomerans was studied. Agrobacterium tumefaciens A136 and KYC55-based bioassays confirmed AHLs production by Pantoea agglomerans. The production ability of AHLs was quantified on the basis of β-galactosidase activity. The influence of temperature (10°C and 20°C) and pH (5.5 and 6.5) on β-galactosidase activity and BAs production by Pantoea agglomerans was determined. Acidification of the environment adversely affected the growth and β-galactosidase activity of Pantoea agglomerans, and AHLs production and BAs accumulation by Pantoea agglomerans was inhibited at low temperature. A significant correlation between β-galactosidase activity and BAs (putrescine, histamine, putrescine and tryptamine) was identified (P < 0.01). Based on the results of this study, the AHL-based QS system influences the concentrations and types of BAs produced by Pantoea agglomerans.


Sign in / Sign up

Export Citation Format

Share Document