scholarly journals Estimation of forest canopy nitrogen content based on remote sensing

2013 ◽  
Vol 31 (6) ◽  
pp. 536-543 ◽  
Author(s):  
Xi-Guang YANG ◽  
Ying YU ◽  
Hai-Jun HUANG ◽  
Wen-Yi FAN
2012 ◽  
Vol 9 (8) ◽  
pp. 10149-10205 ◽  
Author(s):  
E. Boegh ◽  
R. Houborg ◽  
J. Bienkowski ◽  
C. F. Braban ◽  
T. Dalgaard ◽  
...  

Abstract. Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and they play a significant role in the global cycles of carbon, nitrogen and water. Remote sensing data from satellites can be used to estimate leaf area index (LAI), leaf chlorophyll (CHLl) and leaf nitrogen density (Nl). However, methods are often developed using plot scale data and not verified over extended regions that represent a variety of soil spectral properties and canopy structures. In this paper, field measurements and high spatial resolution (10–20 m) remote sensing images acquired from the HRG and HRVIR sensors aboard the SPOT satellites were used to assess the predictability of LAI, CHLl and Nl. Five spectral vegetation indices (SVIs) were used (the Normalized Difference Vegetation index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green Chlorophyll Index) together with the image-based inverse canopy radiative transfer modelling system, REGFLEC (REGularized canopy reFLECtance). While the SVIs require field data for empirical model building, REGFLEC can be applied without calibration. Field data measured in 93 fields within crop- and grasslands of five European landscapes showed strong vertical CHLl gradient profiles in 20% of fields. This affected the predictability of SVIs and REGFLEC. However, selecting only homogeneous canopies with uniform CHLl distributions as reference data for statistical evaluation, significant (p < 0.05) predictions were achieved for all landscapes, by all methods. The best performance was achieved by REGFLEC for LAI (r2=0.7; rmse = 0.73), canopy chlorophyll content (r2=0.51; rmse = 439 mg m−2) and canopy nitrogen content (r2 = 0.53; rmse = 2.21 g m−2). Predictabilities of SVIs and REGFLEC simulations generally improved when constrained to single land use categories (wheat, maize, barley, grass) across the European landscapes, reflecting sensitivity to canopy structures. Predictability further improved when constrained to local (10 × 10 km2) landscapes, thereby reflecting sensitivity to local environmental conditions. All methods showed different predictabilities for land use categories and landscapes. Combining the best methods, LAI, canopy chlorophyll content (CHLc) and canopy nitrogen content (CHLc) for the five landscapes could be predicted with improved accuracy (LAI rmse = 0.59; CHLc rmse = 346 g m−2; Ncrmse = 1.49 g m−2). Remote sensing-based results showed that the vegetation nitrogen pools of the five agricultural landscapes varied from 0.6 to 4.0 t km−2. Differences in nitrogen pools were attributed to seasonal variations, extents of agricultural area, species variations, and spatial variations in nutrient availability. Information on Nl and total Nc pools within the landscapes is important for the spatial evaluation of nitrogen and carbon cycling processes. The upcoming Sentinel-2 satellite mission will provide new multiple narrow-band data opportunities at high spatio-temporal resolution which are expected to further improve remote sensing predictabilities of LAI, CHLl and Nl.


2013 ◽  
Vol 48 (10) ◽  
pp. 1394-1401 ◽  
Author(s):  
Nikrooz Bagheri ◽  
Hojjat Ahmadi ◽  
Seyed Kazem Alavipanah ◽  
Mahmoud Omid

The objective of this work was to evaluate the use of multispectral remote sensing for site-specific nitrogen fertilizer management. Satellite imagery from the advanced spaceborne thermal emission and reflection radiometer (Aster) was acquired in a 23 ha corn-planted area in Iran. For the collection of field samples, a total of 53 pixels were selected by systematic randomized sampling. The total nitrogen content in corn leaf tissues in these pixels was evaluated. To predict corn canopy nitrogen content, different vegetation indices, such as normalized difference vegetation index (NDVI), soil-adjusted vegetation index (Savi), optimized soil-adjusted vegetation index (Osavi), modified chlorophyll absorption ratio index 2 (MCARI2), and modified triangle vegetation index 2 (MTVI2), were investigated. The supervised classification technique using the spectral angle mapper classifier (SAM) was performed to generate a nitrogen fertilization map. The MTVI2 presented the highest correlation (R²=0.87) and is a good predictor of corn canopy nitrogen content in the V13 stage, at 60 days after cultivating. Aster imagery can be used to predict nitrogen status in corn canopy. Classification results indicate three levels of required nitrogen per pixel: low (0-2.5 kg), medium (2.5-3 kg), and high (3-3.3 kg).


Author(s):  
Fenghua Yu ◽  
Shuai Feng ◽  
Weixiang Yao ◽  
Dingkang Wang ◽  
Simin Xing ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 433
Author(s):  
Xiaolan Huang ◽  
Weicheng Wu ◽  
Tingting Shen ◽  
Lifeng Xie ◽  
Yaozu Qin ◽  
...  

This research was focused on estimation of tree canopy cover (CC) by multiscale remote sensing in south China. The key aim is to establish the relationship between CC and woody NDVI (NDVIW) or to build a CC-NDVIW model taking northeast Jiangxi as an example. Based on field CC measurements, this research used Google Earth as a complementary source to measure CC. In total, 63 sample plots of CC were created, among which 45 were applied for modeling and the remaining 18 were employed for verification. In order to ascertain the ratio R of NDVIW to the satellite observed NDVI, a 20-year time-series MODIS NDVI dataset was utilized for decomposition to obtain the NDVIW component, and then the ratio R was calculated with the equation R = (NDVIW/NDVI) *100%, respectively, for forest (CC >60%), medium woodland (CC = 25–60%) and sparse woodland (CC 1–25%). Landsat TM and OLI images that had been orthorectified by the provider USGS were atmospherically corrected using the COST model and used to derive NDVIL. R was multiplied for the NDVIL image to extract the woody NDVI (NDVIWL) from Landsat data for each of these plots. The 45 plots of CC data were linearly fitted to the NDVIWL, and a model with CC = 103.843 NDVIW + 6.157 (R2 = 0.881) was obtained. This equation was applied to predict CC at the 18 verification plots and a good agreement was found (R2 = 0.897). This validated CC-NDVIW model was further applied to the woody NDVI of forest, medium woodland and sparse woodland derived from Landsat data for regional CC estimation. An independent group of 24 measured plots was utilized for validation of the results, and an accuracy of 83.0% was obtained. Thence, the developed model has high predictivity and is suitable for large-scale estimation of CC using high-resolution data.


2021 ◽  
Vol 13 (14) ◽  
pp. 7539
Author(s):  
Zaw Naing Tun ◽  
Paul Dargusch ◽  
DJ McMoran ◽  
Clive McAlpine ◽  
Genia Hill

Myanmar is one of the most forested countries of mainland Southeast Asia and is a globally important biodiversity hotspot. However, forest cover has declined from 58% in 1990 to 44% in 2015. The aim of this paper was to understand the patterns and drivers of deforestation and forest degradation in Myanmar since 2005, and to identify possible policy interventions for improving Myanmar’s forest management. Remote sensing derived land cover maps of 2005, 2010 and 2015 were accessed from the Forest Department, Myanmar. Post-classification change detection analysis and cross tabulation were completed using spatial analyst and map algebra tools in ArcGIS (10.6) software. The results showed the overall annual rate of forest cover loss was 2.58% between 2005 and 2010, but declined to 0.97% between 2010 and 2015. The change detection analysis showed that deforestation in Myanmar occurred mainly through the degradation of forest canopy associated with logging rather than forest clearing. We propose that strengthening the protected area system in Myanmar, and community participation in forest conservation and management. There needs to be a reduction in centralisation of forestry management by sharing responsibilities with local governments and the movement away from corruption in the timber trading industry through the formation of local-based small and medium enterprises. We also recommend the development of a forest monitoring program using advanced remote sensing and GIS technologies.


Sign in / Sign up

Export Citation Format

Share Document