Research on new evolution model of scale-free network

2009 ◽  
Vol 29 (5) ◽  
pp. 1230-1232
Author(s):  
Hao RAO ◽  
Chun YANG ◽  
Shao-hua TAO
2020 ◽  
Vol 1486 ◽  
pp. 022034
Author(s):  
Hongyan Wei ◽  
Jiangong Wang ◽  
Tianqi Wang

2010 ◽  
Vol 59 (8) ◽  
pp. 5175
Author(s):  
He Min-Hua ◽  
Zhang Duan-Ming ◽  
Wang Hai-Yan ◽  
Li Xiao-Gang ◽  
Fang Pin-Jie

2019 ◽  
Vol 10 (3) ◽  
pp. 21-36 ◽  
Author(s):  
Xiaobo Tan ◽  
Ji Tang ◽  
Liting Yu ◽  
Jialu Wang

In this article, the authors present a new novel energy-efficient and fault-tolerant evolution model for large-scale wireless sensor networks based on complex network theory. In the evolution model, not only is the residual energy of each node considered, but also the constraint of links is introduced, which makes the energy consumption of the whole network more balanced. Furthermore, both preferential attachment and random attachment to the evolution model are introduced, which reduces the proportion of the nodes with high degree while keeping scale-free network characteristics to some extent. Theoretical analysis shows that the new model is an extension of the BA model, which is a mixed model between a BA model and a stochastic model. Simulation results show that EFEM has better stochastic network characteristics while keeping scale-free network characteristics if the value of random probability is near 0.2 and it can help to construct a high survivability network for large-scale WSNs.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiuwen Fu ◽  
Yongsheng Yang ◽  
Haiqing Yao

Previous research of wireless sensor networks (WSNs) invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML). The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network) under various attack schemes (i.e., random attack, max-degree attack, and max-status attack) are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.


Sign in / Sign up

Export Citation Format

Share Document