coupled map lattice
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 36)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Hao Zhang ◽  
Zhenyu Li ◽  
Pengfei Yan ◽  
Xiaoqing Wang ◽  
Xingyuan Wang

In this paper, we present a novel multi-threaded parallel permutation and channel-combined diffusion for image encryption which is independent of plain text. In our proposed method, the coupled map lattice is used to generate the key sequences for multi-thread permutation and diffusion. Then intra- and inter-thread permutations are achieved using multi-threading in combination with the tent mapping. For the subsequent diffusion, this paper introduces a method based on channel-combined diffusing which simultaneously diffuses three channels. Experimental results indicate a high encryption performance with the capability of effectively resisting the known plain text and differential attacks. Our proposed method also has a lower computational complexity which enables its applicability in practical scenarios.


2021 ◽  
Vol 62 ◽  
pp. 57-63
Author(s):  
Kotryna Mačernytė ◽  
Rasa Šmidtaitė

In recent years, a lot of research has focused on understanding the behavior of when synchronous and asynchronous phases occur, that is, the existence of chimera states in various networks. Chimera states have wide-range applications in many disciplines including biology, chemistry, physics, or engineering. The object of research in this paper is a coupled map lattice of matrices when each node is described by an iterative map of matrices of order two. A regular topology network of iterative maps of matrices was formed by replacing the scalar iterative map with the iterative map of matrices in each node. The coupled map of matrices is special in a way where we can observe the effect of divergence. This effect can be observed when the matrix of initial conditions is a nilpotent matrix. Also, the evolution of the derived network is investigated. It is found that the network of the supplementary variable $\mu$ can evolve into three different modes: the quiet state, the state of divergence, and the formation of divergence chimeras. The space of parameters of node coupling including coupling strength $\varepsilon$ and coupling range $r$ is also analyzed in this study. Image entropy is applied in order to identify chimera state parameter zones.


2021 ◽  
Vol 140 ◽  
pp. 106974
Author(s):  
Ali Asghar Abbasi ◽  
Mahdi Mazinani ◽  
Rahil Hosseini

2021 ◽  
Vol 11 (9) ◽  
pp. 3797
Author(s):  
Rong Huang ◽  
Fang Han ◽  
Xiaojuan Liao ◽  
Zhijie Wang ◽  
Aihua Dong

Coupled Map Lattice (CML) usually serves as a pseudo-random number generator for encrypting digital images. Based on our analysis, the existing CML-based systems still suffer from problems like limited parameter space and local chaotic behavior. In this paper, we propose a novel intermittent jumping CML system based on multiple chaotic maps. The intermittent jumping mechanism seeks to incorporate the multi-chaos, and to dynamically switch coupling states and coupling relations, varying with spatiotemporal indices. Extensive numerical simulations and comparative studies demonstrate that, compared with the existing CML-based systems, the proposed system has a larger parameter space, better chaotic behavior, and comparable computational complexity. These results highlight the potential of our proposal for deployment into an image cryptosystem.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Zhuo Liu ◽  
Yong Wang ◽  
Leo Yu Zhang ◽  
Jun Ma

The digital image, as the critical component of information transmission and storage, has been widely used in the fields of big data, cloud and frog computing, Internet of things, and so on. Due to large amounts of private information in the digital image, the image protection is fairly essential, and the designing of the encryption image scheme has become a hot issue in recent years. In this paper, to resolve the shortcoming that the probability density distribution (PDD) of the chaotic sequences generated in the original two-dimensional coupled map lattice (2D CML) model is uneven, we firstly proposed an improved 2D CML model according to adding the offsets for each node after every iteration of the original model, which possesses much better chaotic performance than the original one, and also its chaotic sequences become uniform. Based on the improved 2D CML model, we designed a compressive image encryption scheme. Under the condition of different keys, the uniform chaotic sequences generated by the improved 2D CML model are utilized for compressing, confusing, and diffusing, respectively. Meanwhile, the message authentication code (MAC) is employed for guaranteeing that the encryption image be integration. Finally, theoretical analysis and simulation tests both demonstrate that the proposed image encryption scheme owns outstanding statistical, well encryption performance, and high security. It has great potential for ensuring the digital image security in application.


2021 ◽  
Vol 30 (1) ◽  
pp. 47-73
Author(s):  
Lukasz Korus ◽  

This paper presents a mathematical model for a piston flow reactor based on the material balance law using partial differential equations. A more general, nondimensional variant of the model is also derived. The finite difference method and coupled map lattice are used to create numerical algorithms to simulate spatio-temporal behavior in the studied system. The paper also includes a stability analysis of the proposed algorithms and results of numerous numerical simulations, done in order to compare both methods and to visualize the spatio-temporal behavior of the reactor and the effects of different model parameters. Discussion of the obtained results and comparison of both algorithms is also provided.


Sign in / Sign up

Export Citation Format

Share Document