global coupling
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 10)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yu Lin ◽  
Lei Cheng ◽  
Xueyi Wang ◽  
Jay Johnson ◽  
J. D. Perez ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Hernández-León ◽  
R. Koppelmann ◽  
E. Fraile-Nuez ◽  
A. Bode ◽  
C. Mompeán ◽  
...  

AbstractThe biological pump transports organic carbon produced by photosynthesis to the meso- and bathypelagic zones, the latter removing carbon from exchanging with the atmosphere over centennial time scales. Organisms living in both zones are supported by a passive flux of particles, and carbon transported to the deep-sea through vertical zooplankton migrations. Here we report globally-coherent positive relationships between zooplankton biomass in the epi-, meso-, and bathypelagic layers and average net primary production (NPP). We do so based on a global assessment of available deep-sea zooplankton biomass data and large-scale estimates of average NPP. The relationships obtained imply that increased NPP leads to enhanced transference of organic carbon to the deep ocean. Estimated remineralization from respiration rates by deep-sea zooplankton requires a minimum supply of 0.44 Pg C y−1 transported into the bathypelagic ocean, comparable to the passive carbon sequestration. We suggest that the global coupling between NPP and bathypelagic zooplankton biomass must be also supported by an active transport mechanism associated to vertical zooplankton migration.


Author(s):  
SARAFA A. IYANIWURA ◽  
MICHAEL J. WARD

We analyse oscillatory instabilities for a coupled partial-ordinary differential equation (PDE-ODE) system modelling the communication between localised spatially segregated dynamically active signalling compartments that are coupled through a passive extracellular bulk diffusion field in a bounded 2D domain. Each signalling compartment is assumed to secrete a chemical into the extracellular medium (bulk region), and it can also sense the concentration of this chemical in the region around its boundary. This feedback from the bulk region, resulting from the entire collection of cells, in turn modifies the intracellular dynamics within each cell. In the limit where the signalling compartments are circular discs with a small common radius ɛ ≪ 1 and where the bulk diffusivity is asymptotically large, a matched asymptotic analysis is used to reduce the dimensionless PDE–ODE system into a nonlinear ODE system with global coupling. For Sel’kov reaction kinetics, this ODE system for the intracellular dynamics and the spatial average of the bulk diffusion field are then used to investigate oscillatory instabilities in the dynamics of the cells that are triggered due to the global coupling. In particular, numerical bifurcation software on the ODEs is used to study the overall effect of coupling defective cells (cells that behave differently from the remaining cells) to a group of identical cells. Moreover, when the number of cells is large, the Kuramoto order parameter is computed to predict the degree of phase synchronisation of the intracellular dynamics. Quorum sensing behaviour, characterised by the onset of collective behaviour in the intracellular dynamics as the number of cells increases above a threshold, is also studied. Our analysis shows that the cell population density plays a dual role of triggering and then quenching synchronous oscillations in the intracellular dynamics.


2020 ◽  
Author(s):  
Paul Triebkorn ◽  
Joelle Zimmermann ◽  
Leon Stefanovski ◽  
Dipanjan Roy ◽  
Ana Solodkin ◽  
...  

AbstractUsing The Virtual Brain (TVB, thevirtualbrian.org) simulation platform, we explored for 50 individual adult human brains (ages 18-80), how personalized connectome based brain network modelling captures various empirical observations as measured by functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). We compare simulated activity based on individual structural connectomes (SC) inferred from diffusion weighted imaging with fMRI and EEG in the resting state. We systematically explore the role of the following model parameters: conduction velocity, global coupling and graph theoretical features of individual SC. First, a subspace of the parameter space is identified for each subject that results in realistic brain activity, i.e. reproducing the following prominent features of empirical EEG-fMRI activity: topology of resting-state fMRI functional connectivity (FC), functional connectivity dynamics (FCD), electrophysiological oscillations in the delta (3-4 Hz) and alpha (8-12 Hz) frequency range and their bimodality, i.e. low and high energy modes. Interestingly, FCD fit, bimodality and static FC fit are highly correlated. They all show their optimum in the same range of global coupling. In other words, only when our local model is in a bistable regime we are able to generate switching of modes in our global network. Second, our simulations reveal the explicit network mechanisms that lead to electrophysiological oscillations, their bimodal behaviour and inter-regional differences. Third, we discuss biological interpretability of the Stefanescu-Jirsa-Hindmarsh-Rose-3D model when embedded inside the large-scale brain network and mechanisms underlying the emergence of bimodality of the neural signal.With the present study, we set the cornerstone for a systematic catalogue of spatiotemporal brain activity regimes generated with the connectome-based brain simulation platform The Virtual Brain.Author SummaryIn order to understand brain dynamics we use numerical simulations of brain network models. Combining the structural backbone of the brain, that is the white matter fibres connecting distinct regions in the grey matter, with dynamical systems describing the activity of neural populations we are able to simulate brain function on a large scale. In order to make accurate prediction with this network, it is crucial to determine optimal model parameters. We here use an explorative approach to adjust model parameters to individual brain activity, showing that subjects have their own optimal point in the parameter space, depending on their brain structure and function. At the same time, we investigate the relation between bistable phenomena on the scale of neural populations and the changed in functional connectivity on the brain network scale. Our results are important for future modelling approaches trying to make accurate predictions of brain function.


2020 ◽  
Vol 28 (6) ◽  
pp. 7746
Author(s):  
A. Gavrielides ◽  
T. C. Newell
Keyword(s):  

2019 ◽  
Vol 29 (13) ◽  
pp. 1950183
Author(s):  
Mayurakshi Nag ◽  
Swarup Poria

Delay coupled smooth maps over a ring network with global coupling have been considered. Proof of the existence of chaos in the sense of Li–Yorke in the globally coupled smooth maps with homogeneous unit delay has been given by defining a suitable matrix norm. Conditions for the existence of Li–Yorke chaos depending on the coupling strength, map parameter and lattice size have been derived analytically. Chaotic regions in the parameter space are plotted numerically for delay coupled logistic maps.


2019 ◽  
Vol 20 (23) ◽  
pp. 6057
Author(s):  
Francesco Montefusco ◽  
Morten Pedersen

Electrical activity in neurons and other excitable cells is a result of complex interactions between the system of ion channels, involving both global coupling (e.g., via voltage or bulk cytosolic Ca2+ concentration) of the channels, and local coupling in ion channel complexes (e.g., via local Ca2+ concentration surrounding Ca2+ channels (CaVs), the so-called Ca2+ nanodomains). We recently devised a model of large-conductance BKCa potassium currents, and hence BKCa–CaV complexes controlled locally by CaVs via Ca2+ nanodomains. We showed how different CaV types and BKCa–CaV stoichiometries affect whole-cell electrical behavior. Ca2+ nanodomains are also important for triggering exocytosis of hormone-containing granules, and in this regard, we implemented a strategy to characterize the local interactions between granules and CaVs. In this study, we coupled electrical and exocytosis models respecting the local effects via Ca2+ nanodomains. By simulating scenarios with BKCa–CaV complexes with different stoichiometries in pituitary cells, we achieved two main electrophysiological responses (continuous spiking or bursting) and investigated their effects on the downstream exocytosis process. By varying the number and distance of CaVs coupled with the granules, we found that bursting promotes exocytosis with faster rates than spiking. However, by normalizing to Ca2+ influx, we found that bursting is only slightly more efficient than spiking when CaVs are far away from granules, whereas no difference in efficiency between bursting and spiking is observed with close granule-CaV coupling.


2019 ◽  
Vol 21 (5) ◽  
pp. 053002 ◽  
Author(s):  
Xue Li ◽  
Tian Qiu ◽  
Stefano Boccaletti ◽  
Irene Sendiña-Nadal ◽  
Zonghua Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document