Active defense strategy selection based on non-zero-sum attack-defense game model

2013 ◽  
Vol 33 (5) ◽  
pp. 1347-1349 ◽  
Author(s):  
Yongqiang CHEN ◽  
Yu FU ◽  
Xiaoping WU
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiaohu Liu ◽  
Hengwei Zhang ◽  
Yuchen Zhang ◽  
Lulu Shao

The basic hypothesis of evolutionary game theory is that the players in the game possess limited rationality. The interactive behavior of players can be described by a learning mechanism that has theoretical advantages in modeling the network security problem in a real society. The current network security evolutionary game model generally adopts a replicator dynamic learning mechanism and assumes that the interaction between players in the group conforms to the characteristics of uniform mixed distribution. However, in an actual network attack and defense scenario, the players in the game have limited learning capability and can only interact with others within a limited range. To address this, we improved the learning mechanism based on the network topology, established the learning object set based on the learning range of the players, used the Fermi function to calculate the transition probability to the learning object strategy, and employed random noise to describe the degree of irrational influence in the learning process. On this basis, we built an attack and defense evolutionary network game model, analyzed the evolutionary process of attack and defense strategy, solved the evolution equilibrium, and designed a defense strategy selection algorithm. The effectiveness of the model and method is verified by conducting simulation experiments for the transition probability of the players and the evolutionary process of the defense group strategy.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Xiaohu Liu ◽  
Hengwei Zhang ◽  
Yuchen Zhang ◽  
Lulu Shao ◽  
Jihong Han

Most network security research studies based on signaling games assume that either the attacker or the defender is the sender of the signal and the other party is the receiver of the signal. The attack and defense process is commonly modeled and analyzed from the perspective of one-way signal transmission. Aiming at the reality of two-way signal transmission in network attack and defense confrontation, we propose a method of active defense strategy selection based on a two-way signaling game. In this paper, a two-way signaling game model is constructed to analyze the network attack and defense processes. Based on the solution of a perfect Bayesian equilibrium, a defense strategy selection algorithm is presented. The feasibility and effectiveness of the method are verified using examples from real-world applications. In addition, the mechanism of the deception signal is analyzed, and conclusions for guiding the selection of active defense strategies are provided.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 50618-50629 ◽  
Author(s):  
Hengwei Zhang ◽  
Lv Jiang ◽  
Shirui Huang ◽  
Jindong Wang ◽  
Yuchen Zhang

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yanhua Liu ◽  
Hui Chen ◽  
Hao Zhang ◽  
Ximeng Liu

Evolutionary game theory is widely applied in network attack and defense. The existing network attack and defense analysis methods based on evolutionary games adopt the bounded rationality hypothesis. However, the existing research ignores that both sides of the game get more information about each other with the deepening of the network attack and defense game, which may cause the attacker to crack a certain type of defense strategy, resulting in an invalid defense strategy. The failure of the defense strategy reduces the accuracy and guidance value of existing methods. To solve the above problem, we propose a reward value learning mechanism (RLM). By analyzing previous game information, RLM automatically incentives or punishes the attack and defense reward values for the next stage, which reduces the probability of defense strategy failure. RLM is introduced into the dynamic network attack and defense process under incomplete information, and a multistage evolutionary game model with a learning mechanism is constructed. Based on the above model, we design the optimal defense strategy selection algorithm. Experimental results demonstrate that the evolutionary game model with RLM has better results in the value of reward and defense success rate than the evolutionary game model without RLM.


2009 ◽  
Vol 32 (4) ◽  
pp. 817-827 ◽  
Author(s):  
Wei JIANG ◽  
Bin-Xing FANG ◽  
Zhi-Hong TIAN ◽  
Hong-Li ZHANG

2016 ◽  
Vol 26 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Sandeep Kumar

In this paper, we consider a multi-objective two person zero-sum matrix game with fuzzy goals, assuming that each player has a fuzzy goal for each of the payoffs. The max-min solution is formulated for this multi-objective game model, in which the optimization problem for each player is a linear programming problem. Every developed model for each player is demonstrated through a numerical example.


Sign in / Sign up

Export Citation Format

Share Document