scholarly journals The Influence of Biocatalytic Plant Extracts on Biogas Production from Kitchen Wastes at Cryo-mesophilic Temperature Regimes

Author(s):  
Bakari Chaka ◽  
Aloys Osano ◽  
Justin Maghanga ◽  
Martin Magu
2007 ◽  
Vol 2 (1) ◽  
pp. 39-44 ◽  
Author(s):  
E.O.U. Uzodinma . ◽  
A.U. Ofoefule . ◽  
J.I. Eze . ◽  
N.D. Onwuka .

Author(s):  
Ademola Oyejide Adebayo ◽  
Simeon Olatayo Jekayinfa ◽  
Paul Amaechi Ozor ◽  
Charles Mbohwa ◽  
Christiane Herrrmann

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2473 ◽  
Author(s):  
Muhammad Arif Fikri Hamzah ◽  
Jamaliah Md Jahim ◽  
Peer Mohamed Abdul ◽  
Ahmad Jaril Asis

Malaysia is one of the largest palm oil producers worldwide and its most abundant waste, palm oil mill effluent (POME), can be used as a feedstock to produce methane. Anaerobic digestion is ideal for treating POME in methane production due to its tolerance to high-strength chemical oxygen demand (COD). In this work, we compared the culture conditions during the start-up of anaerobic digestion of acidified POME between thermophilic (55 °C) and mesophilic (37 °C) temperatures. The pH of the digester was maintained throughout the experiment at 7.30 ± 0.2 in a working volume of 1000 mL. This study revealed that the thermophilic temperature stabilized faster on the 44th day compared to the 52nd day for the mesophilic temperature. Furthermore, the thermophilic temperature indicated higher biogas production at 0.60 L- CH 4 /L·d compared to the mesophilic temperature at 0.26 L- CH 4 /L·d. Results from this study were consistent with the COD removal of thermophilic temperature which was also higher than the mesophilic temperature.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4217
Author(s):  
German Smetana ◽  
Ewa Neczaj ◽  
Anna Grosser

Sewage sludge (SS) generation and its management still pose a problem in many countries. Anaerobic co-digestion (AcD) of SS with grease trap sludge (GTS) and organic fraction of municipal sewage waste (OFMSW), which are two easily biodegradable substrates, may improve biogas production and AcD kinetics. Algae biomass (AB) of the species Undaria pinnatifida can be the third co-digestion component that may also affect the AcD performance. The aim of the study was therefore to evaluate the performance of mesophilic and thermophilic SS batch AcD with OFMSW, GTS as well as AB through biochemical methane potential (BMP) assay in relation to cumulative specific biogas (YB) and methane yields (Ym). Three kinetic models were applied within the scope of the kinetic study. Results of the study showed that the mixture containing SS, GTS and AB brought the most noticeable improvements in Ym compared to other studied mixtures and in respect to standalone SS digestion, the improvement amounted to 88.37% at mesophilic temperature (260.83 ± 15.02 N mL CH4/g-VSadd and for standalone SS 138.47 ± 4.70 N mL CH4/g-VSadd) and 71.09%, respectively, at the thermophilic one (275.66 ± 4.11 N mL-CH4/g-VSadd and for SS standalone 161.13 ± 13.11 N mL-CH4/g-VSadd).


2020 ◽  
Vol 23 (1) ◽  
pp. 35-42

<p>With the rising interest for sustainable power source and ecological security, anaerobic digestion of biogas technology has attracted considerable attention within the scientific researchers. This paper proposes a new research achievement on biogas production from Rice Mill Wastewater (RMW) with the utilization of anaerobic digester. An anaerobic digester is maintained with RMW and distillery anaerobic sludge at mesophilic temperature condition for 15 days as stabilization mode. After attaining stabilization stage, studies continued to examine the effect of Organic Loading Rate (OLR) and Hydraulic Retention Time (HRT) on the mesophilic anaerobic digestion of RMW. The OLR of the anaerobic reactor increased stepwise from 0.25 to 3.91 Kg COD/m3/dayand HRT ranged from 1 to 32.0 days. The total chemical oxygen demand (TCOD) utilized was higher than 75% and the CH4 percentage of the biogas was 62.00-63.00% for the OLRs studied. The efficient working volume of the digester is preserved as 25% of distillery anaerobic sludge and 75% of rice mill wastewater, loaded at Mesophilic temperature conditions for study purpose. By changing the conditions of OLR and HRT, biogas production, methane yield and percentage of COD reduction is examined. An anaerobic sludge is utilized as a seeding material to biodegrade the organic pollutants present in the wastewater. It will enhance the biological treatment of effluent with anaerobic sludge in a continuous mode of activity.The result showed that the proposed analysis obtains more biogas production with reduced COD when compared with existing approaches.</p>


Sign in / Sign up

Export Citation Format

Share Document