working volume
Recently Published Documents


TOTAL DOCUMENTS

332
(FIVE YEARS 115)

H-INDEX

17
(FIVE YEARS 2)

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 81
Author(s):  
Jamal Ali Kawan ◽  
Fatihah Suja’ ◽  
Sagor Kumar Pramanik ◽  
Arij Yusof ◽  
Rakmi Abdul Rahman ◽  
...  

Treated effluent from a wastewater treatment plant can be further reused as a water resource for a water supply treatment plant. In this case, the treated sewage gathered in the study of the Class V National Water Quality Standard (NWQS) of Malaysia would be treated for use as a water resource for a water treatment plant. In a moving bed biofilm reactor (MBBR) with a 500-L working volume, organic pollutants, undesirable nutrients, and bacteria were removed without disinfectant. At 24-h hydraulic retention time (HRT), the maximum removal efficiency of 5-day biological oxygen demand, ammonia–nitrogen (NH3-N), and total phosphorus were 71%, 48%, and 12%, respectively. The biofilm thickness, which was captured using scanning electron microscopy, increased from 102.6 μm (24-h HRT) to 297.1 μm (2-h HRT). A metagenomic analysis using 16S rRNA showed an abundance of anaerobic bacteria, especially from the Proteobacteria phylum, which made up almost 53% of the total microbes. MBBR operated at 24-h HRT could improve effluent quality, as its characteristics fell into Class IIA of the NWQS of Malaysia, with the exception of the NH3-N content, which indicated that the effluent needed conventional treatment prior to being reused as potable water.



2021 ◽  
Vol 53 (6) ◽  
pp. 210609
Author(s):  
Agus Haryanto ◽  
Shintawati Shintawati ◽  
Udin Hasanudin

Wastewater from crude palm oil mills contains high organic matter, which potentially produces biogas through anaerobic digestion processes. The design and operation of an anaerobic bioreactor require a good understanding of the reaction kinetic in the bioreactor. This study aimed to evaluate the biogas production from POME and to determine the kinetic parameters of microbial growth and the substrate utilization rates in a CIGAR. An experiment was conducted using a 5-m3 bioreactor with a working volume of 4.4 m3. Wastewater from the Bekri palm oil mill was stored in a 5-m3 tank. After stabilization, the wastewater was loaded into the reactor at a rate of 100 to 250 L/d, corresponding to a COD loading rate of 1.373-3.097 kg·m-3.d-1, and an HRT of 18-44 days. Monod, Contois, Moser, and Shuler kinetic models were evaluated. The results showed that the Shuler model performed best for microbial activities, while the first order reaction model performed best for the substrate utilization kinetic. The maximum specific growth rate (μmax) for the Shuler model was 0.052 d-1 and the saturation constant (Kso) was 0.119. The maximum substrate utilization rate constant (ks) was 2.183 d-1 and biomass yield (Yx/s) 0.024 kg/kg. The maximum average efficiency of anaerobic degradation (34.4%) occurred at a feeding rate of 100 L/d with methane yield of 0.120 Nm3/kg of removed COD. This value is relatively low compared to the maximum potential of 0.350 Nm3/kg CODr.



2021 ◽  
Vol 12 (1) ◽  
pp. 183
Author(s):  
Jefferson E. Contreras-Ropero ◽  
Silvia L. Ruiz-Roa ◽  
Janet B. García-Martínez ◽  
Néstor A. Urbina-Suarez ◽  
Germán L. López-Barrera ◽  
...  

The production of vaccines of biological origin presents a tremendous challenge for researchers. In this context, animal cell cultures are an excellent alternative for the isolation and production of biologicals against several viruses, since they have an affinity with viruses and a great capacity for their replicability. Different variables have been studied to know the system’s ideal parameters, allowing it to obtain profitable and competitive products. Consequently, this work focuses its efforts on evaluating an alternative for producing an anti-influenza biological from MDCK cells using SuperPro Designer v8.0 software. The process uses the DMEN culture medium supplemented with nutrients as raw material for cell development; the MDCK cells were obtained from a potential scale-up with a final working volume of 500 L, four days of residence time, inoculum volume of 10%, and continuous working mode with up to a total of 7400 h/Yr of work. The scheme has the necessary equipment for the vaccine’s production, infection, and manufacture with yields of up to 416,698 units/h. In addition, it was estimated to be economically viable to produce recombinant vaccines with competitive prices of up to 0.31 USD/unit.



2021 ◽  
Vol 11 (24) ◽  
pp. 12123
Author(s):  
Marco Iosa ◽  
Alex Martino Cinnera ◽  
Fioravante Capone ◽  
Alessandro Cruciani ◽  
Matteo Paolucci ◽  
...  

In the past two decades, many studies reported the efficacy of upper limb robotic rehabilitation in patients after stroke, also in its chronic phase. Among the possible advantages of robotic therapy over conventional therapy are the objective measurements of kinematic and kinetic parameters during therapy, such as the spatial volume covered by the patient’s upper limb and the weight support provided by the robot. However, the clinical meaning and the usability of this information is still questioned. Forty patients with chronic stroke were enrolled in this study and assessed at the beginning of upper limb robotic therapy (Armeo® Power) and after two weeks (ten sessions) of therapy by recording the working volume and weight support provided by the robot and by administering six clinical scales to assess upper limb mobility, strength, spasticity, pain, neurological deficits, and independency. At baseline, the working volume significantly correlated with spasticity, whereas weight support significantly correlated with upper limb strength, pain, spasticity, and neurological deficits. After two weeks of robotic rehabilitation, all the clinical scores as well as the two parameters improved. However, the percentage changes in the working volume and weight support did not significantly correlate with any of the changes in clinical scores. These results suggest caution in using the robotic parameters as outcome measures because they could follow the general improvement of the patient, but complex relationships with clinical features are possible. Robotic parameters should be analyzed in combination with the clinical scores or other objective measures because they may be informative about therapy progression, and there is a need to combine their clinical, neuroscientific, and biomechanical results to avoid misleading interpretations.



Author(s):  
Igor Pimonov

Due to its advantages, the hydraulic drive is widely used in road construction machines. Depending on its design, the share of the hydraulic drive, which is the most expensive unit of a road construction machine, accounts for thirty to eighty percent of all failures. Reliable hydraulic drive, provides, to a large extent, the reliability of the whole machine and the efficiency of the construction organization as a whole. The efficiency of the hydraulic drive of construction machines, and, as a consequence, the machines themselves, is ensured by a set of measures, among which the most important is the quality design, manufacture and operation, combined into a single structural system. Depending on the quality of cleaning of the working fluid, the service life of hydraulic machines can be increased or decreased several times. Accumulation of pollutants in the hydraulic drive, the hardness of which is significantly higher than the hardness of metals, causes rapid wear of the surfaces of hydraulic units and the service life is rapidly reduced. Cavitation in the pump is accompanied by a pulsation of fluid pressure and noise. These pulsations are due to the return flow of fluid from the discharge cavity of the pump, which is accompanied by hydraulic shocks and as a result of alternating shocks, a pressure pulsation in the discharge line of the pump. The amplitude of these pulsations can, under known conditions, reach a value that causes the destruction of the pump. The possibility of cavitation can be reduced by rational choice of modes of operation of the hydraulic system and the correct design of its units, but this phenomenon can be completely eliminated only by using auxiliary pumping pumps, as well as increasing the pressure in the suction line of the pump. On the basis of the analysis of perspective directions of improvement of the hydraulic drive of the excavator the following improved scheme of it is developed. Usually only high-flow hydraulic motors can be used in flow dividers. But in our case it is necessary that the device had, first of all, small mechanical losses and small cost, and accuracy of division of working liquid which follows on filters can be small. In the volume flow divider, hydraulic motors are used: gear, piston, vane, screw, roller. The simplest dividers of volume type are paired (connected by shafts) hydraulic motors of lamellar (vane) and roller types. Hydraulic motors in this scheme are flow measuring devices (dispensers), which supply for one revolution the volume of liquid, equal without taking into account the leaks in the hydraulic motor, its working volume. The use of a flow divider as a source of hydraulic energy makes it possible to improve the hydraulic drive by combining in a single system the purification of the working fluid and the ejector feed of the pump. The most promising, in terms of cost, are flow dividers based on vane and rotary hydraulic motors..



Author(s):  
Grygoriy Avrunin ◽  
Valery Shevchenko ◽  
Dmitriy Shevchenko ◽  
Oleg Shcherbak ◽  
Igor Pimonov ◽  
...  

Is an integral part of the development of the concept of forming a standard range of transport and technological hydrophilic modular means for maintenance of airfields and aircraft. Goal. Development of scientifically sound recommendations for determining the rational parameters of the hydraulic system with automation of control and energy saving during operation of modular vehicles for maintenance of airfields and aircraft, taking into account the potential of domestic engineering and critical imports of units. Methodology. Analysis of the development of axial-piston pumps and  motors according to the manufacturers' catalogs taking into account the needs of modular vehicles for maintenance of airfields and aircraft, in particular, taking into account the creation of modern hydraulic machines by  enterprise «Hydrosila»  by increasing pressure, speed and development new  regulators. Results. It is established that the domestic nomenclature of modern pumps and  motors of axial piston type allows to create three-dimensional hydraulic drives with power to 110 kW for transmissions with machine stepless remote electrohydraulic regulation of speed of rotation of wheels of modular vehicles and to  85 kW throttle drives of technological equipment with energy saving systems by using pumps with automatic regulators of change of working volume. It has been established that in the pumps for  of transmissions the ratio of mass to power is reduced three times.Originality.  Graphic dependences of power, supply and torque of standard size series on the working volume of axial-piston pumps and hydraulic motors of the domestic enterprise "Hydrosila" for volumetric hydraulic transmissions and technological equipment of aerodrome and aircraft maintenance facilities are constructed. Practical value. The possibility of a rational selection of axial-piston domestic hydraulic machines for the development of hydraulic drives for airfields and aircraft.



2021 ◽  
Vol 24 (4) ◽  
pp. 329-337
Author(s):  
A. A. Khrushchinsky ◽  
S. A. Kuten

The question of the spatial distribution of ion pairs created by 235U fission fragments in the active volume of the fission chamber has been studied. The formulas of the spatial distribution of ion pairs in cylindrical fission chambers are proposed, which allows you to evaluate correctly the density of ion pairs in any point in the sensitive volume of the fission chamber



Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4323
Author(s):  
Gloria Amo-Duodu ◽  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal ◽  
Edward Kwaku Armah ◽  
Jeremiah Adedeji ◽  
...  

In this study, the principle of sustaining circular economy is presented as a way of recovering valuable resources from wastewater and utilizing its energy potential via anaerobic digestion (AD) of municipality wastewater. Biostimulation of the AD process was investigated to improve its treatability efficiency, biogas production, and kinetic stability. Addressing this together with agricultural waste such as eggshells (CE), banana peel (PB), and calcined banana peels (BI) were employed and compared to magnetite (Fe3O4) as biostimulation additives via 1 L biochemical methane potential tests. With a working volume of 0.8 L (charge with inoculum to substrate ratio of 3:5 v/v) and 1.5 g of the additives, each bioreactor was operated at a mesophilic temperature of 40 °C for 30 days while being compared to a control bioreactor. Scanning electron microscopy and energy dispersive X-ray (SEM/EDX) analysis was used to reveal the absorbent’s morphology at high magnification of 10 kx and surface pore size of 20.8 µm. The results showed over 70% biodegradation efficiency in removing the organic contaminants (chemical oxygen demand, color, and turbidity) as well as enhancing the biogas production. Among the setups, the bioreactor with Fe3O4 additives was found to be the most efficient, with an average daily biogas production of 40 mL/day and a cumulative yield of 1117 mL/day. The kinetic dynamics were evaluated with the cumulative biogas produced by each bioreactor via the first order modified Gompertz and Chen and Hashimoto kinetic models. The modified Gompertz model was found to be the most reliable, with good predictability.



2021 ◽  
Vol 3 ◽  
Author(s):  
Katarzyna Szymańska ◽  
Agnieszka Ciemięga ◽  
Katarzyna Maresz ◽  
Wojciech Pudło ◽  
Janusz Malinowski ◽  
...  

In this review article, we first discussed the development of silica monoliths with hierarchical macro-/mesopore structure and their potential figures of merit as continuous-flow micro-/mesoreactors of up to 30 ml working volume. Making use of the flow hindrance of different pore structures seen from the Darcy law perspective, we discriminated four structures of the monoliths (M1–M4). We then summarized the most important results, mainly from our studies of continuous-flow structured monolithic reactors and rotating bed reactors (RBRs) filled with structured pellets, activated with various catalytic entities and enzymes. The results show that an increase in the flow rate and thus velocity in reactors activated with more conventional catalytic sites has no or a minor positive effect on the apparent reaction rate. On the contrary, in those with the most open structure (M1) and functionalized with enzymes, it could increase by more than two orders of magnitude even at low overpressures. The production systems worked stably for at least 200 h. To conclude, the synthetic system made of the hierarchically structured monoliths, or RBRs filled with structured catalytic pellets, lay the foundation for a new platform for the high-yield production of a wide variety of specialty chemicals, even on a multikilogram scale, in a safe and sustained manner.



2021 ◽  
Vol 943 (1) ◽  
pp. 012017
Author(s):  
R C Evidente ◽  
M C Almendrala ◽  
A R Caparanga ◽  
K R Pamintuan ◽  
J A Mendoza

Abstract With goals in determining the effect of diluting the distillery wastewater (DWW) and of varying the amount of DWW and press mud (PM), anaerobic co-digestion study was carried out at mesophilic condition in a 2-L Erlenmeyer flask, with a working volume of 800 mL for Batch 1 and 1500 mL for Batch 2 experiments. For Batch 1, two different ratios of DWW and tap water, with 2:3 and 3:2, were used to assess the effect of dilution on the methane yield, where same volumetric amount of PM was added. For Batch 2, following ratio of PM and DWW were used: a) 1:0, b) 1:1, c) 1:1, d) 2:1, and e) 1:2. All samples had the same amount of inoculum, except that Batch 1 samples had bagasse. The parameters that were assessed after 42 days of digestion were: pH, COD, BOD, TSS, VS, Cu, Ca, Mg, Mn, TOC, TN, and methane yield. For the effect of dilution, a significant difference in the methane yield between samples with higher and lower dilution ratio was seen, and in the first batch, the optimal dilution ratio of DWW and H2O, with 3:2 gave higher methane yield of 78.23% (v/v). Meanwhile, optimal volumetric ratio of DWW and PM from the Batch 2 experiments, with value of 1:2, gave the highest methane yield of 79.43% (v/v).



Sign in / Sign up

Export Citation Format

Share Document