scholarly journals The Optimum Mesophilic Temperature of Batch Process Biogas Production from Animal-based Wastes

2014 ◽  
Vol 8 (16) ◽  
pp. 1772-1776 ◽  
Author(s):  
Osita Obineche Obiukwu ◽  
Lawan U. Grema
2015 ◽  
Vol 35 (5) ◽  
pp. 951-958 ◽  
Author(s):  
Deny Oliva-Merencio ◽  
Ileana Pereda-Reyes ◽  
Ulrike Schimpf ◽  
Stefan Koehler ◽  
Ariovaldo J. da Silva

ABSTRACT This paper studied the effect of adding an enzyme (ellulose) on anaerobic digestion of maize silage. We compared materials at chopping lengths of 8 mm (MSL), 4mm (MSS) and natural size (Ms) under a mesophilic and discontinuous operation (batch process). Hence, we found the process to be significantly influenced by particle size. Moreover, the ellulose addition did not significantly impact biogas production after a 35-day digestion period. Ms and MSS displayed an improved response to all variables when compared with MSL and MSL+C, with significant differences. Studies on the refractory fraction at infinite time (R0) have demonstrated that the lowest values correspond to Ms and MSS (0.122 and 0.155, respectively). The Kinetic approach and the Ultimate Biodegradability test are useful tools to evaluate the effect of the addition of an enzyme to the anaerobic process.


2007 ◽  
Vol 2 (1) ◽  
pp. 39-44 ◽  
Author(s):  
E.O.U. Uzodinma . ◽  
A.U. Ofoefule . ◽  
J.I. Eze . ◽  
N.D. Onwuka .

2015 ◽  
Vol 4 (2) ◽  
pp. 165 ◽  
Author(s):  
Mahsa Madani Hosseini ◽  
Catherine N. Mulligan ◽  
Suzelle Barrington

<p class="emsd">In-Storage-Psychrophilic-Anaerobic-Digestion (ISPAD) is a treatment system applicable to wastewaters stored for over 100 days, such as livestock wastes and municipal sludge. The ISPAD system differs from conventional reactors by being a sequentially fed batch process operating at a temperature fluctuating with ambient. The objective of this study was to develop a mathematical model to simulate the ISPAD process, verify the value of its microbial kinetics, and to simulate the pH evolution of its content along with its methane (CH<sub>4</sub>) production. Furthermore, the values of the ISPAD microbial kinetics were compared to that of previous years to track for further acclimation to psychrophilic conditions. Simulation of ISPAD was achieved using the Simulink/Matlab software. The model was calibrated using laboratory data obtained from batch experiments using 7-year-old ISPAD inoculum, and glucose as substrate, and where glucose, VFAs and pH changes were monitored along with biogas production. The ISPAD model showed good agreement with the experimental data representing the system behaviour between 4 and 35 ºC. Although microbial activity at 4 °C was much slower than that at 18 and 35 ºC, it showed acclimation to low temperatures. Furthermore, comparison of microbial kinetic values over 3 years of field ISPAD monitoring demonstrated continued population acclimation, especially for the methanogens.</p>


2016 ◽  
Vol 22 (1) ◽  
pp. 33-39 ◽  
Author(s):  
V. Sangeetha ◽  
V. Sivakumar

Sago processing industries generate a voluminous amount of wastewater with extremely high concentration of organic pollutants, resulting in water pollution. Anaerobic digestion has employed for reduction of COD and maximization of biogas production using synthetic sago wastewater by batch process. Mixed culture obtained from sago industry sludge was used as a source for microorganism. Response surface methodology was used to optimize the variables, such as pH, initial BOD, temperature and retention time. Statistical results were assessed with various descriptive, such as p value, lack of fit (F-test), coefficient of R2 determination, and adequate precision values. Pareto Analysis of Variance revealed that the coefficients of determination value (R2) of % COD removal, % BOD removal and biogas production were 0.994, 0.993 and 0.988. The optimum condition in which maximum COD removal (81.85%), BOD removal (91.61%) and biogas production of 99.4 ml/day was achieved at pH 7 with an initial BOD of 1374 mg/l, and with the retention time of 10 days at 32oC.


2019 ◽  
Vol 4 (4) ◽  
pp. 1-3
Author(s):  
Mona Khidir Mohammed ◽  
G. A. Gasmelseed ◽  
Mohammed H. Abuuznien

Slaughter house waste contains high levels of organic matter and pollutants. These pollutants can affect the ecosystem and public health negatively, to minimize the effects of these pollutants many treatments are used, one of these is biological treatment methods.  In this study potential of biogas production from cattle paunch manure (stomach digestion content) was investigated using a batch process laboratory scale of liters digester size. Three replicate of total solid concentration of (5%, 7%) of cattle paunch manure were mixed with (10%v/v) inoculums with control units for each concentrations at room temperature. The total amount of biogas produced   after 49 days of experiments were, 12.678 L, 11.544 L, 8.154 and 5.724 L for,  7% ,5% TS seeded sample, 7%  and 5% total solid control  respectively.


Author(s):  
Ademola Oyejide Adebayo ◽  
Simeon Olatayo Jekayinfa ◽  
Paul Amaechi Ozor ◽  
Charles Mbohwa ◽  
Christiane Herrrmann

Author(s):  
Heru Surianto ◽  
Slamet Raharjo ◽  
Suci Wulandari

The previous experiment was obtained that homemade activator is the best activator to produce biogas by using food waste consist of vegetable, fruit and rice waste.  The current research is carried out by adding chicken manure as a co-activator. Chicken manure content rich in nitrogen can be significantly enhance biogas production. This study is expected to increase the biogas production. There are two processes conducted at the laboratory scale, batch and semi-continuous process. The batch process aim to activate bacteria. The ratio set at food waste/chicken manure, 2 : 1 of digester #1, 3 : 1 of digester #2, 4 : 1 of digester #3 and digester control using food waste only. Stage two aims to produce biogas by adding food waste for 6 days periodically.  The ratio is set at food waste/water, 1 : 2. The highest biogas yielded is digester 2 with a cumulative volume biogas 120.77 liters consist of 71.01% CH4, 26% CO2, 2.9% O2 and 0.088% H2S. The potential of methane gas produced is 0.87 kWh and methane volume per TS and VS at around 18.72 L/kg and 34.68 L/kg, respectively.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2473 ◽  
Author(s):  
Muhammad Arif Fikri Hamzah ◽  
Jamaliah Md Jahim ◽  
Peer Mohamed Abdul ◽  
Ahmad Jaril Asis

Malaysia is one of the largest palm oil producers worldwide and its most abundant waste, palm oil mill effluent (POME), can be used as a feedstock to produce methane. Anaerobic digestion is ideal for treating POME in methane production due to its tolerance to high-strength chemical oxygen demand (COD). In this work, we compared the culture conditions during the start-up of anaerobic digestion of acidified POME between thermophilic (55 °C) and mesophilic (37 °C) temperatures. The pH of the digester was maintained throughout the experiment at 7.30 ± 0.2 in a working volume of 1000 mL. This study revealed that the thermophilic temperature stabilized faster on the 44th day compared to the 52nd day for the mesophilic temperature. Furthermore, the thermophilic temperature indicated higher biogas production at 0.60 L- CH 4 /L·d compared to the mesophilic temperature at 0.26 L- CH 4 /L·d. Results from this study were consistent with the COD removal of thermophilic temperature which was also higher than the mesophilic temperature.


Sign in / Sign up

Export Citation Format

Share Document