scholarly journals Settings-Free Hybrid Metaheuristic General Optimization Methods

Author(s):  
Héctor Migallón ◽  
Akram Belazi ◽  
José-Luis Sánchez-Romero ◽  
Héctor Rico ◽  
Antonio Jimeno-Morenilla
Author(s):  
VINCENT ROBERGE ◽  
MOHAMMED TARBOUCHI ◽  
FRANÇOIS ALLAIRE

In this paper, we present a parallel hybrid metaheuristic that combines the strengths of the particle swarm optimization (PSO) and the genetic algorithm (GA) to produce an improved path-planner algorithm for fixed wing unmanned aerial vehicles (UAVs). The proposed solution uses a multi-objective cost function we developed and generates in real-time feasible and quasi-optimal trajectories in complex 3D environments. Our parallel hybrid algorithm simulates multiple GA populations and PSO swarms in parallel while allowing migration of solutions. This collaboration between the GA and the PSO leads to an algorithm that exhibits the strengths of both optimization methods and produces superior solutions. Moreover, by using the "single-program, multiple-data" parallel programming paradigm, we maximize the use of today's multicore CPU and significantly reduce the execution time of the parallel program compared to a sequential implementation. We observed a quasi-linear speedup of 10.7 times faster on a 12-core shared memory system resulting in an execution time of 5 s which allows in-flight planning. Finally, we show with statistical significance that our parallel hybrid algorithm produces superior trajectories to the parallel GA or the parallel PSO we previously developed.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Lihong Guo ◽  
Gai-Ge Wang ◽  
Heqi Wang ◽  
Dinan Wang

A hybrid metaheuristic approach by hybridizing harmony search (HS) and firefly algorithm (FA), namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods.


2018 ◽  
Author(s):  
Alejandro F. Villaverde ◽  
Fabian Fröhlich ◽  
Daniel Weindl ◽  
Jan Hasenauer ◽  
Julio R. Banga

AbstractMotivationMechanistic kinetic models usually contain unknown parameters, which need to be estimated by optimizing the fit of the model to experimental data. This task can be computationally challenging due to the presence of local optima and ill-conditioning. While a variety of optimization methods have been suggested to surmount these issues, it is not obvious how to choose the best one for a given problem a priori, since many factors can influence their performance. A systematic comparison of methods that are suited to parameter estimation problems of sizes ranging from tens to hundreds of optimization variables is currently missing, and smaller studies indeed provided contradictory findings.ResultsHere, we use a collection of benchmark problems to evaluate the performance of two families of optimization methods: (i) a multi-start of deterministic local searches; and (ii) a hybrid metaheuristic combining stochastic global search with deterministic local searches. A fair comparison is ensured through a collaborative evaluation, involving researchers applying each method on a daily basis, and a consideration of multiple performance metrics capturing the trade-off between computational efficiency and robustness. Our results show that, thanks to recent advances in the calculation of parametric sensitivities, a multi-start of gradient-based local methods is often a successful strategy, but a better performance can be obtained with a hybrid metaheuristic. The best performer is a combination of a global scatter search metaheuristic with an interior point local method, provided with gradients estimated with adjoint-based sensitivities. We provide an implementation of this novel method in an open-source software toolbox to render it available to the scientific community.Availability and ImplementationThe code to reproduce the results is available at Zenodo https://doi.org/10.5281/[email protected], [email protected]


2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Gaige Wang ◽  
Lihong Guo

A novel robust hybrid metaheuristic optimization approach, which can be considered as an improvement of the recently developed bat algorithm, is proposed to solve global numerical optimization problems. The improvement includes the addition of pitch adjustment operation in HS serving as a mutation operator during the process of the bat updating with the aim of speeding up convergence, thus making the approach more feasible for a wider range of real-world applications. The detailed implementation procedure for this improved metaheuristic method is also described. Fourteen standard benchmark functions are applied to verify the effects of these improvements, and it is demonstrated that, in most situations, the performance of this hybrid metaheuristic method (HS/BA) is superior to, or at least highly competitive with, the standard BA and other population-based optimization methods, such as ACO, BA, BBO, DE, ES, GA, HS, PSO, and SGA. The effect of the HS/BA parameters is also analyzed.


2018 ◽  
Author(s):  
Gérard Cornuéjols ◽  
Javier Peña ◽  
Reha Tütüncü
Keyword(s):  

Author(s):  
Gerard Cornuejols ◽  
Reha Tutuncu
Keyword(s):  

TAPPI Journal ◽  
2013 ◽  
Vol 12 (4) ◽  
pp. 19-27
Author(s):  
PATRICK HUBER ◽  
LAURENT LYANNAZ ◽  
BRUNO CARRÉ

The fraction of deinked pulp for coated paper production is continually increasing, with some mills using 100% deinked pulp for the base paper. The brightness of the coated paper made from deinked pulp may be reached through a combination of more or less extensive deinking, compensated by appropriate coating, to optimize costs overall. The authors proposed general optimization methods combined with Kubelka-Munk multilayer calculations to find the most economical combination of deinking and coating process that would produce a coated paper made from DIP, at a given target brightness, while maintaining mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document