scholarly journals A DNA extraction method with SDS from single nematodes for direct application to PCR amplification

2010 ◽  
Vol 40 (1) ◽  
pp. 13-14 ◽  
Author(s):  
Hiromichi Sakai
2019 ◽  
Vol 39 (2) ◽  
Author(s):  
Yimiao Xia ◽  
Fusheng Chen ◽  
Yan Du ◽  
Chen Liu ◽  
Guanhao Bu ◽  
...  

Abstract Soybean is the most important genetically modified (GM) oilseed worldwide. Regulations relating to the approval of biotech soybean varieties and product labeling demand accurate and reliable detection techniques to screen for GM soya. High-quality extracted DNA is essential for DNA-based monitoring methods. Thus, four widely used protocols (SDS, CTAB, DP305, and DNeasy Plant Mini Kit) were compared in the present study to explore the most efficient DNA extraction method for raw soya matrix. The SDS-based method showed the highest applicability. Then crucial factors influencing DNA yield and purity, such as SDS lysis buffer component concentrations and organic compounds used to isolate DNA, were further investigated to improve the DNA obtained from raw soybean seeds, which accounts for the innovation of this work. As a result, lysis buffer (2% SDS (w/v), 150 mM NaCl, 50 mM Tris/HCl, 50 mM EDTA, pH 8.0) and organic reagents including chloroform/isoamyl alcohol (24:1, v/v) (C: I), isopropanol, and ethanol corresponding to the extraction and first and second precipitation procedures, respectively, were used in the optimized SDS method. The optimized method was verified by extracting approximately 2020–2444 ng DNA/mg soybean with A260/280 ratios of 1.862–1.954 from five biotech and non-biotech soybean varieties. Only 0.5 mg of soya was required to obtain enough DNA for PCR amplification using the optimized SDS-based method. These results indicate that the screening protocol in the present study achieves the highest suitability and efficiency for DNA isolation from raw soya seed flour.


2007 ◽  
Vol 10 (7) ◽  
pp. 1122-1125 ◽  
Author(s):  
Li Maoteng ◽  
Liu Jianmin ◽  
Zhangyi . ◽  
Wang Pei ◽  
Gan Lu ◽  
...  

2011 ◽  
Vol 52 (6) ◽  
pp. 626-633 ◽  
Author(s):  
J. Li ◽  
B. Li ◽  
Y. Zhou ◽  
J. Xu ◽  
J. Zhao

2019 ◽  
Author(s):  
Sudeshna Chakraborty ◽  
Anwesha Saha ◽  
N.A. Aravind

AbstractIsolation of high molecular weight DNA from gastropod molluscs and its subsequent PCR amplification is considered difficult due to excessive mucopolysaccharides secretion which co-precipitate with DNA and obstruct successful amplification. In an attempt to address this issue, we describe a modified CTAB DNA extraction method that proved to work significantly better with a number of freshwater and terrestrial gastropod taxa. We compared the performance of this method with Qiagen® DNeasy Blood and Tissue Kit. Reproducibility of amplification was verified using a set of taxon-specific primers wherein, modified CTAB extracted DNA could be replicated at least four out of five times but kit extracted DNA could not be replicated. Additionally, sequence quality was significantly better with CTAB extracted DNA. This could be attributed to the removal of polyphenolic compounds by polyvinyl pyrrolidone (PVP) which is the only difference between conventional and modified CTAB DNA extraction methods for animals. The genomic DNA isolated using modified CTAB protocol was of high quality (A260/280 ≥ 1.80) and could be used for downstream reactions even after long term storage (more than two years).


2017 ◽  
Vol 9 (2) ◽  
pp. 866-870
Author(s):  
Sweta Sinha ◽  
Amarendra Kumar

In the recent genomic era, polymerase chain reaction (PCR) has become a basic tool in molecular studies and the success of PCR depends upon the template DNA. PCR technique is quite robust and often unnecessary to extract high quality of DNA and hence crude DNA can be used as template for amplification. Therefore, we have evaluated NaOH-Tris DNA extraction method for PCR analysis because this is very simple, time saving and safe without the need to use expensive or rare materials and laboratory apparatus. This method only requires a small amount of leaf tissue, NaOH, Tris, micro tube and plastic pestle. The amplified PCR products showed clear, sharp and uniform bands gave similar results as compared with the modified CTAB method. The DNA obtained is crude contains impurities like protein, RNA but these impurities did not affect PCR amplification. This DNA extraction method is evaluated for brinjal (Solanummelongena L.), chilli (Capsicum annuum L.), rice (Oryza sativa L.) and tomato (Solanumlycopersicum L.) crop. Many other crop plants could also be amplified using the same DNA extraction method for molecular analysis of large samples. Thus, the use of NaOH-Tris method will allow researchers to obtain DNA from plant quickly for use in molecular studies.


2016 ◽  
Vol 5 (08) ◽  
pp. 4754
Author(s):  
Tanushree Mitra* ◽  
Shivshankar Kumdale ◽  
Sameer Chowdhary ◽  
Amol D. Raut

The main objective of this study was to make sure whether randomly taken 12 samples were sensitive to abacavir. The genomic DNA from 12 blood sample were extracted by phenol chloroform DNA extraction method, extracted genomic DNA were amplified and sequenced, thereafter SNPs were detected. Every sample had shown the presence of normal base at SNP position. This study indicated, those randomly taken 12 patients were sensitive to abacavir, so they can consume abacavir if they get infected with HIV.


Sign in / Sign up

Export Citation Format

Share Document