scholarly journals Extending the Applicability and Convergence Domain of a Fifth-Order Iterative Scheme under Hölder Continuous Derivative in Banach Spaces

2021 ◽  
pp. 258-270
Author(s):  
Debasis Sharma ◽  
Sanjaya Kumar Parhi ◽  
Shanta Kumari Sunanda

The most significant contribution made by this study is that the applicability and convergence domain of a fifth-order convergent nonlinear equation solver is extended. We use Hölder condition on the first Fréchet derivative to study the local analysis, and this expands the applicability of the formula for such problems where the earlier study based on Lipschitz constants cannot be used. This study generalizes the local analysis based on Lipschitz constants. Also, we avoid the use of the extra assumption on boundedness of the first derivative of the involved operator. Finally, numerical experiments ensure that our analysis expands the utility of the considered scheme. In addition, the proposed technique produces a larger convergence domain, in comparison to the earlier study, without using any extra conditions.

2018 ◽  
Vol 149 (2) ◽  
pp. 533-560
Author(s):  
Patricio Felmer ◽  
Erwin Topp

In this paper, we study the fractional Dirichlet problem with the homogeneous exterior data posed on a bounded domain with Lipschitz continuous boundary. Under an extra assumption on the domain, slightly weaker than the exterior ball condition, we are able to prove existence and uniqueness of solutions which are Hölder continuous on the boundary. In proving this result, we use appropriate barrier functions obtained by an approximation procedure based on a suitable family of zero-th order problems. This procedure, in turn, allows us to obtain an approximation scheme for the Dirichlet problem through an equicontinuous family of solutions of the approximating zero-th order problems on ${\bar \Omega}$. Both results are extended to an ample class of fully non-linear operators.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 271 ◽  
Author(s):  
Ramandeep Behl ◽  
Ioannis K. Argyros

Many real-life problems can be reduced to scalar and vectorial nonlinear equations by using mathematical modeling. In this paper, we introduce a new iterative family of the sixth-order for a system of nonlinear equations. In addition, we present analyses of their convergences, as well as the computable radii for the guaranteed convergence of them for Banach space valued operators and error bounds based on the Lipschitz constants. Moreover, we show the applicability of them to some real-life problems, such as kinematic syntheses, Bratu’s, Fisher’s, boundary value, and Hammerstein integral problems. We finally wind up on the ground of achieved numerical experiments, where they perform better than other competing schemes.


1998 ◽  
Vol 18 (6) ◽  
pp. 1467-1471
Author(s):  
BRYAN P. RYNNE

Recently, Naito considered quasi-periodic orbits of Hölder continuous functions and obtained results relating the exponent in the Hölder condition to the asymptotic behaviour of the inclusion lengths of the $\epsilon$-almost periods of these orbits, and also to the fractal dimension of these orbits. In this paper we improve these results.


2021 ◽  
Vol 4 (1) ◽  
pp. 34-43
Author(s):  
Samundra Regmi ◽  
◽  
Ioannis K. Argyros ◽  
Santhosh George ◽  
◽  
...  

In this study a convergence analysis for a fast multi-step Chebyshe-Halley-type method for solving nonlinear equations involving Banach space valued operator is presented. We introduce a more precise convergence region containing the iterates leading to tighter Lipschitz constants and functions. This way advantages are obtained in both the local as well as the semi-local convergence case under the same computational cost such as: extended convergence domain, tighter error bounds on the distances involved and a more precise information on the location of the solution. The new technique can be used to extend the applicability of other iterative methods. The numerical examples further validate the theoretical results.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 299 ◽  
Author(s):  
Ioannis Argyros ◽  
Á. Magreñán ◽  
Lara Orcos ◽  
Íñigo Sarría

The aim of this paper is to present a new semi-local convergence analysis for Newton’s method in a Banach space setting. The novelty of this paper is that by using more precise Lipschitz constants than in earlier studies and our new idea of restricted convergence domains, we extend the applicability of Newton’s method as follows: The convergence domain is extended; the error estimates are tighter and the information on the location of the solution is at least as precise as before. These advantages are obtained using the same information as before, since new Lipschitz constant are tighter and special cases of the ones used before. Numerical examples and applications are used to test favorable the theoretical results to earlier ones.


2021 ◽  
Vol 2 ◽  
pp. 3
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George ◽  
Christopher I. Argyros

In this paper, we revisited the Ostrowski's method for solving Banach space valued equations. We developed a technique  to determine a subset of the original convergence domain and using this new Lipschitz constants derived. These constants are at least as tight as the earlier ones leading to a finer convergence analysis in both the semi-local and the local convergence case. These techniques are very general, so they can be used to extend the applicability of other methods without additional hypotheses. Numerical experiments complete this study.


Sign in / Sign up

Export Citation Format

Share Document