Design, Optimization and Evaluation of Repaglinide Self-Nanoemulsifying Drug Delivery for Enhanced Solubility

Author(s):  
Mahalaxmi K ◽  
Sailu Ch

The aim of study was to develop self-nanoemulsifying systems of poorly water-soluble drug repaglinide, which is an antidiabetic drug in the class of medications known as meglitinides. Solubility of repaglinide in oily phases and surfactants was determined to identify components of self-nanoemulsifying drug delivery system (SNEDDS). Surfactants and oil was selected based on solubility studies were further screened for their efficiency in formulation. Acrysol K 150, Kolliphor EL and Capmul MCM were selected as oil, surfactant and co-surfactant respectively. Formulation F8 was found to be optimized formulation on the basis of in vitro dissolution studies, particle size and zeta potential. The optimized formulation was then subjected to stability studies and was found to be stable after 6 months. Thus, SNEDDS were found to be influential in improving the release performance of repaglinide, indicating their potential to improve the solubility and oral bioavailability of repaglinide.  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 993
Author(s):  
Mohammed S. Algahtani ◽  
Abdul Aleem Mohammed ◽  
Javed Ahmad ◽  
M. M. Abdullah ◽  
Ehab Saleh

The 3D printing techniques have been explored extensively in recent years for pharmaceutical manufacturing and drug delivery applications. The current investigation aims to explore 3D printing for the design and development of a nanomedicine-based oral solid dosage form of a poorly water-soluble drug. A self-nanoemulsifying tablet formulation of dapagliflozin propanediol monohydrate was developed utilizing the semisolid pressure-assisted microsyringe (PAM) extrusion-based 3D printing technique. The developed formulation system consists of two major components (liquid and solid phase), which include oils (caproyl 90, octanoic acid) and co-surfactant (PEG 400) as liquid phase while surfactant (poloxamer 188) and solid matrix (PEG 6000) as solid-phase excipients that ultimately self-nanoemulsify as a drug encapsulated nanoemulsion system on contact with aqueous phase/gastrointestinal fluid. The droplet size distribution of the generated nanoemulsion from a self-nanoemulsifying 3D printed tablet was observed to be 104.7 ± 3.36 nm with polydispersity index 0.063 ± 0.024. The FT-IR analysis of the printed tablet revealed that no drug-excipients interactions were observed. The DSC and X-RD analysis of the printed tablet revealed that the loaded drug is molecularly dispersed in the crystal lattice of the tablet solid matrix and remains solubilized in the liquid phase of the printed tablet. SEM image of the drug-loaded self-nanoemulsifying tablets revealed that dapagliflozin propanediol monohydrate was completely encapsulated in the solid matrix of the printed tablet, which was further confirmed by SEM-EDS analysis. The in vitro dissolution profile of dapagliflozin-loaded self-nanoemulsifying tablet revealed an immediate-release drug profile for all three sizes (8 mm, 10 mm, and 12 mm) tablets, exhibiting >75.0% drug release within 20 min. Thus, this study has emphasized the capability of the PAM-based 3D printing technique to print a self-nanoemulsifying tablet dosage form with an immediate-release drug profile for poorly water-soluble drug.


2021 ◽  
Vol 71 (5) ◽  
pp. 393-409
Author(s):  
Earle Radha-Rani ◽  
Gadela Venkata-Radha

In the present study, co-crystals (CCs) of Paliperidone (PPD) with coformers like benzoic acid (BA) and P-amino benzoic acid (PABA) were synthesized and characterized to improve the physicochemical properties and dissolution rate. CCs were prepared by the solvent evaporation (SE) technique and were compared with the products formed by neat grinding (NG) and liquid assisted grinding (LAG) in their enhancement of solubility. The formation of CCs was confirmed by the IR spectroscopy, powder X-ray diffraction and thermal analysis methods. The saturation solubility studies indicate that the aqueous solubility of PPD-BA and PPD-PABA CCs was significantly improved to 1.343±0.162mg/ml and 1.964±0.452mg/ml, respectively, in comparison with the PPD solubility of 0.473mg/ml. This increase in solubility is 2.83-and 3.09-fold, respectively. PPD exhibited a poor dissolution of 37.8% in 60min, while the dissolution of the CCs improved tremendously to 96.07% and 89.65% in 60min. CCs of PPD with BA and PABA present a novel approach to overcome the solubility challenges of poorly water-soluble drug PPD.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (08) ◽  
pp. 53-60
Author(s):  
Purushottam Patil ◽  
Malik Shaikh ◽  
Paresh Mahaparale

Solid self-micro emulsification technique is the new approach for poorly water-soluble and poorly bioavailable drugs by allowing the drug substance to be incorporated into the oil phase and thus having the ability to permeate the GI membrane to a faster extent. Oleic acid, Tween 80, methanol and colloidal silicon dioxide were used as penetrant, surfactant, co-surfactant and adsorbent, respectively. The interaction between drug and excipients was examined by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The results of DSC and FTIR studies did not reveal any possible drug-excipient interactions. The conversion of liquid self-microemulsifying drug delivery system (SMEDDS) into the solid SMEDDS increases the stability of the emulsion formulation achieved by physical adsorption of an adsorbent material. The release of drug from SMEDDS formulation is justified by in-vitro dissolution studies. SMEDDS increases the solubility of the drug and improves the bioavailability, without disturbing gastrointestinal transit. SMEDDS has the potential to provide a useful oral solid dosage form for the poorly water-soluble drug ziprasidone.


2020 ◽  
Vol 21 (5) ◽  
Author(s):  
Xu Cheng ◽  
Jianlong Gao ◽  
Jiaqi Li ◽  
Gang Cheng ◽  
Meijuan Zou ◽  
...  

2015 ◽  
Vol 17 (1) ◽  
pp. 167-179 ◽  
Author(s):  
Chris Brough ◽  
Dave A. Miller ◽  
Justin M. Keen ◽  
Shawn A. Kucera ◽  
Dieter Lubda ◽  
...  

2011 ◽  
Vol 38 (7) ◽  
pp. 883-892 ◽  
Author(s):  
Mithun Mohanraor Bandivadeka ◽  
Shyam Sundar Pancholi ◽  
Ruchika Kaul-Ghanekar ◽  
Amit Choudhari ◽  
Soumya Koppikar

Sign in / Sign up

Export Citation Format

Share Document