scholarly journals Comparison between Organic Working Fluids in order to Improve Waste Heat Recovery from Internal Combustion Engines by means of Rankine Cycle Systems

2020 ◽  
Vol 71 (1) ◽  
pp. 113-121
Author(s):  
Alexandru Racovitza ◽  
Horatiu Pop ◽  
Valentin Apostol ◽  
Tudor Prisecaru ◽  
Daniel Taban

The present works deals with waste heat recovery from internal combustion engines using Rankine cycle systems where working fluid are organic liquids (ORC). The first part of the paper presents the ORC technology as one of the most suitable procedure for waste heat recovery from exhaust gas of internal combustion engine (ICE). The particular engine considered in the present work is a turbocharged compression ignition engine mounted on an experimental setup. The working fluids for ORC system are: isobutene, propane, RE245fa2, RE245cb2, R245fa, R236fa, R365mfc, R1233zd(E), R1234yf and R1234ze(Z). Experimental data derived from the experimental setup has been used for 40%, 55% and 70% engine load. This papers focusses on superheating increment, on thermal efficiency and on net power output, obtained with each working fluids in Rankine cycle. Results point out the superheating increment that gives the highest thermal efficiency for each working fluid. The highest thermal efficiency is achieved in case of using R1233zd(E) as working fluid. In case of using R1233zd(E) as working fluid at 40 % load of the engine, the output power of the Rankine cycle is 3.6 kW representing 6.2 %, from the rated power at this load; at 55% load it is 5.7 kW representing 6.7 % the rated power and at 70% it is 6.7 kW representing 6.5 % from the rated power. Future perspectives are given.

Author(s):  
Philipp Skarke ◽  
Shawn Midlam-Mohler ◽  
Marcello Canova

This paper presents a feasibility analysis on the application of Organic Rankine Cycles as a Waste Heat Recovery system for automotive internal combustion engines. The analysis is conducted considering the Ohio State University EcoCAR, a student prototype plug-in hybrid electric vehicle, as a case study for preliminary fuel economy evaluation. Starting from a energy-based powertrain simulation model validated on experimental data from the prototype vehicle, a first and second-law analysis was conducted to identify the potential for engine waste heat recovery, considering a variety of driving cycles and assuming the vehicle operating in charge-sustaining (HEV) mode. Then, a quasi-static thermodynamic model of an Organic Rankine Cycle (ORC) was designed, calibrated from data available in literature and optimized to fit the prototype vehicle. Simulations were then carried out to evaluate the amount of energy recovered by the ORC system, considering both urban and highway driving conditions. The results of the simulations show that a simple ORC system is able to recover up to 10% of the engine waste heat on highway driving conditions, corresponding to a potential 7% improvement in fuel consumption, with low penalization of the added weight to the vehicle electric range.


2013 ◽  
Vol 17 (2) ◽  
pp. 611-624 ◽  
Author(s):  
Mojtaba Tahani ◽  
Saeed Javan ◽  
Mojtaba Biglari

There are a substantial amount of waste heat through exhaust gas and coolant of an Internal Combustion Engine. Organic Rankine cycle is one of the opportunities in Internal Combustion Engines waste heat recovery. In this study, two different configurations of Organic Rankine cycle with the capability of simultaneous waste heat recovery from exhaust gas and coolant of a 12L diesel engine were introduced: Preheat configuration and Two-stage. First, a parametric optimization process was performed for both configurations considering R-134a, R-123, and R-245fa as the cycle working fluids. The main objective in optimization process was maximization of the power generation and cycle thermal efficiency. Expander inlet pressure and preheating temperature were selected as design parameters. Finally, parameters like hybrid generated power and reduction of fuel consumption were studied for both configurations in different engine speeds and full engine load. It was observed that using R-123 as the working fluid, the best performance in both configurations was obtained and as a result the 11.73% and 13.56% reduction in fuel consumption for both preheat and Two-stage configurations were found respectively.


2018 ◽  
Author(s):  
Carlos Cabezas ◽  
José Mendoza ◽  
Iván Ponce ◽  
Rafael Cantorin ◽  
Daniel Gonzales ◽  
...  

This work describes the preliminary design of a lab-scale organic Rankine cycle (ORC) for waste heat recovery based applications. As heat source for the ORC, exhaust gases from an actual internal combustion engine are utilized. The design is primarily carried out accounting for the working fluid path. More specifically, a brief introduction to be subject is initially provided. The details of the ORC preliminary design are discussed next. This includes the selection of the main working fluid, the definition of the ORC plant layout and the design of the main ORC plant components. The specifics of an overall control loop resembling an actual control system that could be used in the designed ORC based plant is also provided. In terms of power output, the results show that up to 1.68 kW can be produced from the waste heat of internal combustion engines like the one accounted for in this work. Compared to the shaft power (25.1 kW) associated with the internal combustion engine providing the heat source, this power output represents about 7%. The preliminary design described here constitutes the first step of a large effort aiming to build, install and test a lab-scale ORC for educational purposes. It is expected that such ORC based plant allows carrying out in future several studies, including the development of different control strategies for maximizing the operational performance of these plants.


Sign in / Sign up

Export Citation Format

Share Document