scholarly journals Structural Heterogeneity of an Amorphous-Nanocrystalline Alloy Fe77Cu1Si16B6 in the Nanometer Range

Author(s):  
A. M. Frolov ◽  
A. V. Ansovich ◽  
G. S. Kraynova ◽  
V. V. Tkachev ◽  
S.V. Dolzhikov ◽  
...  

In this article, an alloy of the Finemet type Fe77Cu1Si16B6 obtained by quenching from a liquid state (spinning method) in the initial state is investigated. The main research methods were scanning and transmission electron microscopy. Methods for describing multiscale structural heterogeneities in amorphous-nanocrystalline alloys have been developed, allowing the structural state to be described and its influence on the physicochemical and technical properties to be determined depending on the technological conditions for obtaining these alloys. Representation of electron microscopic images in the form of Fourier spectra made it possible to reveal the nature of the formation of short- and middle-order in amorphous-nanocrystalline alloys according to the principle of self-similar spatial structures. The analysis of electron microscopic images by integral Lebesgue measures revealed density fluctuations over the alloy volume, which corresponds to the hierarchical representation of structural inhomogeneities in amorphous metallic alloys.

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Takumi Higaki ◽  
Natsumaro Kutsuna ◽  
Kae Akita ◽  
Mayuko Sato ◽  
Fumie Sawaki ◽  
...  

2015 ◽  
Vol 19 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Chan Yun Kim ◽  
Seungsoo Rho ◽  
Naeun Lee ◽  
Chang-Kyu Lee ◽  
Youngje Sung

Author(s):  
R. A. Waugh ◽  
J. R. Sommer

Cardiac sarcoplasmic reticulum (SR) is a complex system of intracellular tubules that, due to their small size and juxtaposition to such electron-dense structures as mitochondria and myofibrils, are often inconspicuous in conventionally prepared electron microscopic material. This study reports a method with which the SR is selectively “stained” which facilitates visualizationwith the transmission electron microscope.


Author(s):  
Henry S. Slayter

Electron microscopic methods have been applied increasingly during the past fifteen years, to problems in structural molecular biology. Used in conjunction with physical chemical methods and/or Fourier methods of analysis, they constitute powerful tools for determining sizes, shapes and modes of aggregation of biopolymers with molecular weights greater than 50, 000. However, the application of the e.m. to the determination of very fine structure approaching the limit of instrumental resolving power in biological systems has not been productive, due to various difficulties such as the destructive effects of dehydration, damage to the specimen by the electron beam, and lack of adequate and specific contrast. One of the most satisfactory methods for contrasting individual macromolecules involves the deposition of heavy metal vapor upon the specimen. We have investigated this process, and present here what we believe to be the more important considerations for optimizing it. Results of the application of these methods to several biological systems including muscle proteins, fibrinogen, ribosomes and chromatin will be discussed.


Sign in / Sign up

Export Citation Format

Share Document