scholarly journals Management of a Dual-Bus AC+DC Microgrid Based on a Wind Turbine with Double Stator Induction Generator

2021 ◽  
Vol 16 ◽  
pp. 297-307
Author(s):  
Marcelo G. Cendoya ◽  
Juan I. Talpone ◽  
Paul F. Puleston ◽  
Jose A. Barrado-Rodrigo ◽  
Luis Martinez-Salamero ◽  
...  

The topology and management of a sustainable dual-bus, AC and DC, microgrid designed to operate connected to a weak grid is presented. AC+DC hybrid microgrids are a robust and cost-competitive solution for poorly connected areas, as can be found in rural or island electrification. The versatile microgrid proposed in this work is developed around a wind turbine based on a particular induction generator with double stator winding and squirrel cage rotor (DWIG). This singular generator is especially suitable for a combined AC+DC coupled microgrid application. One of its stator windings is coupled to the DC bus via a controlled AC/DC converter. The other is directly connected to the AC bus, only during the periods of abundant wind resource. The DWIG is complemented with photovoltaic panels and a hybrid energy storage system, comprising flow batteries assisted by supercapacitors, which converge to the DC Bus. The DC bus exchanges power with the AC bus through an interlinking inverter. The article describes the topology and details the operation of its Supervisory Control system, which gives rise to the five operating modes of the proposed AC+DC DWIG based microgrid. Its performance under different generation conditions and load regimes is thoroughly assessed by simulation.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2854 ◽  
Author(s):  
Danijel Pavković ◽  
Mihael Cipek ◽  
Zdenko Kljaić ◽  
Tomislav Mlinarić ◽  
Mario Hrgetić ◽  
...  

This contribution outlines the design of electric vehicle direct-current (DC) bus control system supplied by a battery/ultracapacitor hybrid energy storage system, and its coordination with the fully electrified vehicle driveline control system. The control strategy features an upper-level DC bus voltage feedback controller and a direct load compensator for stiff tracking of variable (speed-dependent) voltage target. The inner control level, comprising dedicated battery and ultracapacitor current controllers, is commanded by an intermediate-level control scheme which dynamically distributes the upper-level current command between the ultracapacitor and the battery energy storage systems. The feedback control system is designed and analytical expressions for feedback controller parameters are obtained by using the damping optimum criterion. The proposed methodology is verified by means of simulations and experimentally for different realistic operating regimes, including electric vehicle DC bus load step change, hybrid energy storage system charging/discharging, and electric vehicle driveline subject to New European Driving Cycle (NEDC), Urban Driving Dynamometer Schedule (UDDS), New York Certification Cycle (NYCC) and California Unified Cycle (LA92), as well as for abrupt acceleration/deceleration regimes.


2019 ◽  
Vol 44 (3) ◽  
pp. 2316-2331 ◽  
Author(s):  
Enrique González‐Rivera ◽  
Raúl Sarrias‐Mena ◽  
Pablo García‐Triviño ◽  
Luis M. Fernández‐Ramírez

Sign in / Sign up

Export Citation Format

Share Document