scholarly journals Stability Analysis and Robust H∞ Filtering for Discrete-time Nonlinear Systems with Time-varying Delays

2021 ◽  
Vol 20 ◽  
pp. 281-288
Author(s):  
Mengying Ding ◽  
Yali Dong

In this paper, we investigate the problem of robust H∞ filter design for a class of discrete-time nonlinear systems. The systems under consider involves time-varying delays and parameters uncertainties. The main objective is to design a linear full-order filter to ensure that the resulting filtering error system is asymptotically stable with a prescribed H∞ performance level. By constructing an appropriate Lyapunov-Krasovskii functional, some novel sufficient conditions are established to guarantee the filter error dynamics system is robust asymptotically stable with H∞ performance γ , and the H∞ filter is designed in term of linear matrix inequalities. Finally, a numerical example is provided to illustrate the efficiency of proposed method.

2021 ◽  
Vol 20 ◽  
pp. 88-97
Author(s):  
Mengying Ding ◽  
Yali Dong

This paper investigates the problem of robust H∞ observer-based control for a class of discrete-time nonlinear systems with time-varying delays and parameters uncertainties. We propose an observer-based controller. By constructing an appropriate Lyapunov-Krasovskii functional, some sufficient conditions are developed to ensure the closed-loop system is robust asymptotically stable with H∞ performance in terms of the linear matrix inequalities. Finally, a numerical example is given to illustrate the efficiency of proposed methods.


2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
Zhongda Lu ◽  
Guoliang Zhang ◽  
Yi Sun ◽  
Jie Sun ◽  
Fangming Jin ◽  
...  

This paper investigates nonfragile H∞ filter design for a class of continuous-time delayed Takagi-Sugeno (T-S) fuzzy systems with interval time-varying delays. Filter parameters occur multiplicative gain variations according to the filter’s implementation, to handle this variations, a nonfragile H∞ filter is presented and a novel filtering error system is established. The nonfragile H∞ filter guarantees the filtering error system to be asymptotically stable and satisfies given H∞ performance index. By constructing a novel Lyapunov-Krasovskii function and using the linear matrix inequality (LMI), delay-dependent conditions are exploited to derive sufficient conditions for nonfragile designing H∞ filter. Using new matrix decoupling method to reduce the computational complexity, the filter parameters can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, numerical examples are given to show the effectiveness of the proposed method.


Author(s):  
Miloud Koumir ◽  
Abderrahim El-Amrani ◽  
Ismail Boumhidi

<p>This paper is concerned with the problem of model reduction design for continuous systems in Takagi-Sugeno fuzzy model. Through the defined FF H∞ gain performance, sufficient conditions are derived to design model reduction and to assure the fuzzy error system to be asymptotically stable with a FF H∞ gain performance index. The explicit conditions of fuzzy model reduction are developed by solving linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.</p>


2012 ◽  
Vol 562-564 ◽  
pp. 1646-1649 ◽  
Author(s):  
Rong You Zhang ◽  
Ni Zhang

The generalized H2 filtering problem is investigated for linear discrete-time switched systems with multiple time-varying delays. By constructing the piecewise Lyapunov-Krasovskii functionals, employing Jensen inequality and slack variables, the delay-dependent sufficient conditions are derived for the filter-error system to be stable with a H2 performance. Based on the established results, the filter design method is presented in terms of the linear matrix inequalities (LMI). The design procedure is brief and easy to compute. The optimal filter can be solved with LMI toolbox of MATLAB directly. Finally, the simulation results illustrate the effectiveness and feasibility of the proposed method.


2012 ◽  
Vol 482-484 ◽  
pp. 1881-1885
Author(s):  
Jian Hu Jiang ◽  
Chao Wu ◽  
Yun Wang Ge ◽  
Li Jun Song

The stability control problem is considered for a class of discrete-time T-S fuzzy bilinear system with time-varying delay in both state and input. Based on the parallel distribute compensation (PDC) scheme, some sufficient conditions are derived to guarantee the global asymptotically stability of the overall fuzzy system, which are represented in terms of matrix inequality. The corresponding controller can be obtained by solving a set of linear matrix inequalities. Finally, a simulation example shows that the approach is effective.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Mingang Hua ◽  
Pei Cheng ◽  
Juntao Fei ◽  
Jianyong Zhang ◽  
Junfeng Chen

The robust filtering problem for a class of uncertain discrete-time fuzzy stochastic systems with sensor nonlinearities and time-varying delay is investigated. The parameter uncertainties are assumed to be time varying norm bounded in both the state and measurement equations. By using the Lyapunov stability theory and some new relaxed techniques, sufficient conditions are proposed to guarantee the robustly stochastic stability with a prescribedH∞performance level of the filtering error system for all admissible uncertainties, sensor nonlinearities, and time-varying delays. These conditions are dependent on the lower and upper bounds of the time-varying delays and are obtained in terms of a linear matrix inequality (LMI). Finally, two simulation examples are provided to illustrate the effectiveness of the proposed methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Jidong Wang ◽  
Xiaoping Si ◽  
Kezhen Han

This paper deals with the problem of robust generalizedH2filter design for uncertain discrete-time fuzzy systems with output quantization. Firstly, the outputs of the system are quantized by a memoryless logarithmic quantizer before being transmitted to a filter. Then, attention is focused on the design of a generalizedH2filter to mitigate quantization effects, such that the filtering error systems ensure the robust stability with a prescribed generalizedH2noise attenuation level. Via applying Finsler lemma to introduce some slack variables and using the fuzzy Lyapunov function, sufficient conditions for the existence of a robust generalizedH2filter are expressed in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750027 ◽  
Author(s):  
Wei Zhang ◽  
Chuandong Li ◽  
Tingwen Huang

In this paper, the stability and periodicity of memristor-based neural networks with time-varying delays are studied. Based on linear matrix inequalities, differential inclusion theory and by constructing proper Lyapunov functional approach and using linear matrix inequality, some sufficient conditions are obtained for the global exponential stability and periodic solutions of memristor-based neural networks. Finally, two illustrative examples are given to demonstrate the results.


2015 ◽  
Vol 742 ◽  
pp. 399-403
Author(s):  
Ya Jun Li ◽  
Jing Zhao Li

This paper investigates the exponential stability problem for a class of stochastic neural networks with leakage delay. By employing a suitable Lyapunov functional and stochastic stability theory technic, the sufficient conditions which make the stochastic neural networks system exponential mean square stable are proposed and proved. All results are expressed in terms of linear matrix inequalities (LMIs). Example and simulation are presented to show the effectiveness of the proposed method.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yifu Feng ◽  
Zhi-Min Li ◽  
Xiao-Heng Chang

This paper investigates the problem of H∞ filtering for class discrete-time Lipschitz nonlinear singular systems with measurement quantization. Assume that the system measurement output is quantized by a static, memoryless, and logarithmic quantizer before it is transmitted to the filter, while the quantizer errors can be treated as sector-bound uncertainties. The attention of this paper is focused on the design of a nonlinear quantized H∞ filter to mitigate quantization effects and ensure that the filtering error system is admissible (asymptotically stable, regular, and causal), while having a unique solution with a prescribed H∞ noise attenuation level. By introducing some slack variables and using the Lyapunov stability theory, some sufficient conditions for the existence of the nonlinear quantized H∞ filter are expressed in terms of linear matrix inequalities (LMIs). Finally, a numerical example is presented to demonstrate the effectiveness of the proposed quantized filter design method.


Sign in / Sign up

Export Citation Format

Share Document