scholarly journals Applying Set Membership Strategy in State of Charge Estimation for Lithium-ion Battery

2022 ◽  
Vol 21 ◽  
pp. 1-19
Author(s):  
Wang Jianhong ◽  
Ricardo A. Ramirez-Mendoza

As state of charge is one important variable to monitor the later battery management system, and as traditional Kalman filter can be used to estimate the state of charge for Lithium-ion battery on basis of probability distribution on external noise. To relax this strict assumption on external noise, set membership strategy is proposed to achieve our goal in case of unknown but bounded noise. External noise with unknown but bounded is more realistic than white noise. After equivalent circuit model is used to describe the Lithium-ion battery charging and discharging properties, one state space equation is constructed to regard state of charge as its state variable. Based on state space model about state of charge, two kinds of set membership strategies are put forth to achieve the state estimation, which corresponds to state of charge estimation. Due to external noise is bounded, i.e. external noise is in a set, we construct interval and ellipsoid estimation for state estimation respectively in case of external noise is assumed in an interval or ellipsoid. Then midpoint of interval or center of the ellipsoid are chosen as the final value for state of charge estimation. Finally, one simulation example confirms our theoretical results.

2021 ◽  
Vol 10 (4) ◽  
pp. 1759-1768
Author(s):  
Mouhssine Lagraoui ◽  
Ali Nejmi ◽  
Hassan Rayhane ◽  
Abderrahim Taouni

The main goal of a battery management system (BMS) is to estimate parameters descriptive of the battery pack operating conditions in real-time. One of the most critical aspects of BMS systems is estimating the battery's state of charge (SOC). However, in the case of a lithium-ion battery, it is not easy to provide an accurate estimate of the state of charge. In the present paper we propose a mechanism based on an extended kalman filter (EKF) to improve the state-of-charge estimation accuracy on lithium-ion cells. The paper covers the cell modeling and the system parameters identification requirements, the experimental tests, and results analysis. We first established a mathematical model representing the dynamics of a cell. We adopted a model that comprehends terms that describe the dynamic parameters like SOC, open-circuit voltage, transfer resistance, ohmic loss, diffusion capacitance, and resistance. Then, we performed the appropriate battery discharge tests to identify the parameters of the model. Finally, the EKF filter applied to the cell test data has shown high precision in SOC estimation, even in a noisy system.


Author(s):  
Kevin C. Ndeche ◽  
Stella O. Ezeonu

An accurate estimate of the state of charge, which describes the remaining percentage of a battery’s capacity, has been an important and ever existing problem since the invention of the electrochemical cell. State of charge estimation is one of the important function of a battery management system which ensures the safe, efficient and reliable operation of a battery. In this paper, the coulomb counting method is implemented for the estimation of the state of charge of lithium-ion battery. The hardware comprises an Arduino based platform for control and data processing, and a 16-bit analog to digital converter for current and voltage measurement. The embedded algorithm initializes with a self-calibration phase, during which the battery capacity, coulombic efficiency and initial state of charge are evaluated. The initial state of charge is determined at the fully charged state (100% state of charge) or the fully discharged state (0% state of charge). The cumulative error of this method was addressed by routine recalibration of the capacity, coulombic efficiency and state of charge at the fully-charged and fully-discharged states. The algorithm was validated by charging/discharging a lithium-ion battery through fifty complete cycles and evaluating the error in the estimated state of charge. The result shows a mean absolute error of 0.35% in the estimated state of charge during the test. Further analysis, considering prolonged battery operation without parameters recalibration, suggests that error in the coulombic efficiency term contributes the most to the increasing error in the estimated state of charge with each cycle.


Author(s):  
Meiying Li ◽  
Zhiping Guo ◽  
Yuan Li ◽  
Wenliang Wu

Abstract The state of charge (SoC) of the battery is a typical characterization of the operating state of the battery and criterion for the battery management system (BMS) control strategy, which must be evaluated precisely. The establishment of an accurate algorithm of SoC estimation is of great significance for BMS, which can help the driver judge the endurance mileage of electric vehicle (EV) correctly. In this paper, a second-order resistor-capacity (RC) equivalent circuit model is selected to characterize the electrical characteristics based on the electrochemical model of the LiFePO4/graphene (LFP/G) hybrid cathode lithium-ion battery. Moreover, seven open circuit voltage (OCV) models are compared and the best one of them is used to simulate the dynamic characteristics of the battery. It is worth mentioning that an improved test method is proposed, which is combined with least square for parameters identification. In addition, the extended Kalman filter (EKF) algorithm is selected to estimate the SoC during the charging and discharging processes. The simulation results show that the EKF algorithm has the higher accuracy and rapidity than the KF algorithm.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3383 ◽  
Author(s):  
Woo-Yong Kim ◽  
Pyeong-Yeon Lee ◽  
Jonghoon Kim ◽  
Kyung-Soo Kim

This paper presents a nonlinear-model-based observer for the state of charge estimation of a lithium-ion battery cell that always exhibits a nonlinear relationship between the state of charge and the open-circuit voltage. The proposed nonlinear model for the battery cell and its observer can estimate the state of charge without the linearization technique commonly adopted by previous studies. The proposed method has the following advantages: (1) The observability condition of the proposed nonlinear-model-based observer is derived regardless of the shape of the open circuit voltage curve, and (2) because the terminal voltage is contained in the state vector, the proposed model and its observer are insensitive to sensor noise. A series of experiments using an INR 18650 25R battery cell are performed, and it is shown that the proposed method produces convincing results for the state of charge estimation compared to conventional SOC estimation methods.


Author(s):  
Shun-Li Wang ◽  
Carlos Fernandez ◽  
Chun-Mei Yu ◽  
Chuan-Yun Zou ◽  
James Coffie-Ken

The state of charge estimation is an important part of the battery management system, the estimation accuracy of which seriously affects the working performance of the lithium ion battery pack. The unscented Kalman filter algorithm has been developed and applied to the iterative calculation process. When it is used to estimate the SOC value, there is a rounding error in the numerical calculation. When the sigma point is sampled in the next round, an imaginary number appears, resulting in the estimation failure. In order to improve the estimation accuracy, an improved adaptive square root - unscented Kalman filter method is introduced which combines the QR decomposition in the calculation process. Meanwhile, an adaptive noise covariance matching method is implied. Experiments show that the proposed method can guarantee the semi-positive and numerical stability of the state covariance, and the estimation accuracy can reach the third-order precision. The error remains about 1.60% under the condition of drastic voltage and current changes. The conclusion of this experiment can provide a theoretical basis of the state of charge estimation in the battery management of the lithium ion battery pack.


2015 ◽  
Vol 713-715 ◽  
pp. 1099-1102
Author(s):  
Jing Jing Wu ◽  
Jing Huang ◽  
Hai Long Li ◽  
Wan Li Kang

There has been a growing interest in building equivalent circuit models for lithium-ion battery with evolutionary algorithms. One of the well-known algorithm is the Hoeffding bound based evolutionary algorithm (HEA). In this paper, we first introduce the definitions of the Hoeffding bound, selection operations and Hoeffding evolutionary algorithm. And then, we introduced the method for building equivalent circuit models, which composed of four fundamental functions, connection-modifying function, component-creating function, arithmetic-performing functions and automatically defined function. In this way, a Hoeffding-evolutionary-algorithm based equivalent-circuit-model for lithium-ion battery is modeled. With the model-based state estimation approaches, the obtained model can assess the state-of-charge (SOC) of cells precisely.


Sign in / Sign up

Export Citation Format

Share Document