scholarly journals POS-Tagging based Neural Machine Translation System for European Languages using Transformers

Author(s):  
Preetham Ganesh ◽  
Bharat S. Rawal ◽  
Alexander Peter ◽  
Andi Giri

The interaction between human beings has always faced different kinds of difficulties. One of those difficulties is the language barrier. It would be a tedious task for someone to learn all the syllables in a new language in a short period and converse with a native speaker without grammatical errors. Moreover, having a language translator at all times would be intrusive and expensive. We propose a novel approach to Neural Machine Translation (NMT) system using interlanguage word similaritybased model training and Part-Of-Speech (POS) Tagging based model testing. We compare these approaches using two classical architectures: Luong Attention-based Sequence-to-Sequence architecture and Transformer based model. The sentences for the Luong Attention-based Sequence-to-Sequence were tokenized using SentencePiece tokenizer. The sentences for the Transformer model were tokenized using Subword Text Encoder. Three European languages were selected for modeling, namely, Spanish, French, and German. The datasets were downloaded from multiple sources such as Europarl Corpus, Paracrawl Corpus, and Tatoeba Project Corpus. Sparse Categorical CrossEntropy was the evaluation metric during the training stage, and during the testing stage, the Bilingual Evaluation Understudy (BLEU) Score, Precision Score, and Metric for Evaluation of Translation with Explicit Ordering (METEOR) score were the evaluation metrics.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Kohulan Rajan ◽  
Achim Zielesny ◽  
Christoph Steinbeck

AbstractChemical compounds can be identified through a graphical depiction, a suitable string representation, or a chemical name. A universally accepted naming scheme for chemistry was established by the International Union of Pure and Applied Chemistry (IUPAC) based on a set of rules. Due to the complexity of this ruleset a correct chemical name assignment remains challenging for human beings and there are only a few rule-based cheminformatics toolkits available that support this task in an automated manner. Here we present STOUT (SMILES-TO-IUPAC-name translator), a deep-learning neural machine translation approach to generate the IUPAC name for a given molecule from its SMILES string as well as the reverse translation, i.e. predicting the SMILES string from the IUPAC name. In both cases, the system is able to predict with an average BLEU score of about 90% and a Tanimoto similarity index of more than 0.9. Also incorrect predictions show a remarkable similarity between true and predicted compounds.


Author(s):  
Rashmini Naranpanawa ◽  
Ravinga Perera ◽  
Thilakshi Fonseka ◽  
Uthayasanker Thayasivam

Neural machine translation (NMT) is a remarkable approach which performs much better than the Statistical machine translation (SMT) models when there is an abundance of parallel corpus. However, vanilla NMT is primarily based upon word-level with a fixed vocabulary. Therefore, low resource morphologically rich languages such as Sinhala are mostly affected by the out of vocabulary (OOV) and Rare word problems. Recent advancements in subword techniques have opened up opportunities for low resource communities by enabling open vocabulary translation. In this paper, we extend our recently published state-of-the-art EN-SI translation system using the transformer and explore standard subword techniques on top of it to identify which subword approach has a greater effect on English Sinhala language pair. Our models demonstrate that subword segmentation strategies along with the state-of-the-art NMT can perform remarkably when translating English sentences into a rich morphology language regardless of a large parallel corpus.


2016 ◽  
Vol 5 (4) ◽  
pp. 51-66 ◽  
Author(s):  
Krzysztof Wolk ◽  
Krzysztof P. Marasek

The quality of machine translation is rapidly evolving. Today one can find several machine translation systems on the web that provide reasonable translations, although the systems are not perfect. In some specific domains, the quality may decrease. A recently proposed approach to this domain is neural machine translation. It aims at building a jointly-tuned single neural network that maximizes translation performance, a very different approach from traditional statistical machine translation. Recently proposed neural machine translation models often belong to the encoder-decoder family in which a source sentence is encoded into a fixed length vector that is, in turn, decoded to generate a translation. The present research examines the effects of different training methods on a Polish-English Machine Translation system used for medical data. The European Medicines Agency parallel text corpus was used as the basis for training of neural and statistical network-based translation systems. A comparison and implementation of a medical translator is the main focus of our experiments.


2019 ◽  
Vol 28 (3) ◽  
pp. 455-464 ◽  
Author(s):  
M. Anand Kumar ◽  
B. Premjith ◽  
Shivkaran Singh ◽  
S. Rajendran ◽  
K. P. Soman

Abstract In recent years, the multilingual content over the internet has grown exponentially together with the evolution of the internet. The usage of multilingual content is excluded from the regional language users because of the language barrier. So, machine translation between languages is the only possible solution to make these contents available for regional language users. Machine translation is the process of translating a text from one language to another. The machine translation system has been investigated well already in English and other European languages. However, it is still a nascent stage for Indian languages. This paper presents an overview of the Machine Translation in Indian Languages shared task conducted on September 7–8, 2017, at Amrita Vishwa Vidyapeetham, Coimbatore, India. This machine translation shared task in Indian languages is mainly focused on the development of English-Tamil, English-Hindi, English-Malayalam and English-Punjabi language pairs. This shared task aims at the following objectives: (a) to examine the state-of-the-art machine translation systems when translating from English to Indian languages; (b) to investigate the challenges faced in translating between English to Indian languages; (c) to create an open-source parallel corpus for Indian languages, which is lacking. Evaluating machine translation output is another challenging task especially for Indian languages. In this shared task, we have evaluated the participant’s outputs with the help of human annotators. As far as we know, this is the first shared task which depends completely on the human evaluation.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050002
Author(s):  
Taichi Aida ◽  
Kazuhide Yamamoto

Current methods of neural machine translation may generate sentences with different levels of quality. Methods for automatically evaluating translation output from machine translation can be broadly classified into two types: a method that uses human post-edited translations for training an evaluation model, and a method that uses a reference translation that is the correct answer during evaluation. On the one hand, it is difficult to prepare post-edited translations because it is necessary to tag each word in comparison with the original translated sentences. On the other hand, users who actually employ the machine translation system do not have a correct reference translation. Therefore, we propose a method that trains the evaluation model without using human post-edited sentences and in the test set, estimates the quality of output sentences without using reference translations. We define some indices and predict the quality of translations with a regression model. For the quality of the translated sentences, we employ the BLEU score calculated from the number of word [Formula: see text]-gram matches between the translated sentence and the reference translation. After that, we compute the correlation between quality scores predicted by our method and BLEU actually computed from references. According to the experimental results, the correlation with BLEU is the highest when XGBoost uses all the indices. Moreover, looking at each index, we find that the sentence log-likelihood and the model uncertainty, which are based on the joint probability of generating the translated sentence, are important in BLEU estimation.


Sign in / Sign up

Export Citation Format

Share Document