scholarly journals SPACE-OUT: graphics programs to study and to simulate space use and movement patterns

1982 ◽  
Vol 14 (1) ◽  
pp. 34-36 ◽  
Author(s):  
Marc Bekoff ◽  
C. Wieland ◽  
W. A. Lavender
Keyword(s):  
2021 ◽  
Author(s):  
Ty J. Werdel ◽  
Jonathan A. Jenks ◽  
John T. Kanta ◽  
Chadwick P. Lehman ◽  
Teresa J. Frink

2005 ◽  
Vol 70 (3) ◽  
pp. 609-618 ◽  
Author(s):  
Judy Stamps ◽  
Marybeth Buechner ◽  
Katie Alexander ◽  
Jeremy Davis ◽  
Nicole Zuniga

Hydrobiologia ◽  
2015 ◽  
Vol 766 (1) ◽  
pp. 333-348 ◽  
Author(s):  
J. Barry ◽  
M. Newton ◽  
J. A. Dodd ◽  
O. E. Hooker ◽  
P. Boylan ◽  
...  

Herpetologica ◽  
2016 ◽  
Vol 72 (3) ◽  
pp. 214 ◽  
Author(s):  
Javan M. Bauder ◽  
David R. Breininger ◽  
M. Rebecca Bolt ◽  
Michael L. Legare ◽  
Christopher L. Jenkins ◽  
...  

2011 ◽  
Vol 35 (3) ◽  
pp. 261-269 ◽  
Author(s):  
Stephen L. Webb ◽  
Matthew R. Dzialak ◽  
Seth M. Harju ◽  
Larry D. Hayden-Wing ◽  
Jeffrey B. Winstead

PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0147404 ◽  
Author(s):  
Amandine Ramos ◽  
Odile Petit ◽  
Patrice Longour ◽  
Cristian Pasquaretta ◽  
Cédric Sueur

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0253345
Author(s):  
Aline Giroux ◽  
Zaida Ortega ◽  
Luiz Gustavo Rodrigues Oliveira-Santos ◽  
Nina Attias ◽  
Alessandra Bertassoni ◽  
...  

Knowing the influence of intrinsic and environmental traits on animals’ movement is a central interest of ecology and can aid to enhance management decisions. The giant anteater (Myrmecophaga tridactyla) is a vulnerable mammal that presents low capacity for physiological thermoregulation and uses forests as thermal shelters. Here, we aim to provide reliable estimates of giant anteaters’ movement patterns and home range size, as well as untangle the role of intrinsic and environmental drivers on their movement. We GPS-tracked 19 giant anteaters in Brazilian savannah. We used a continuous-time movement model to estimate their movement patterns (described by home range crossing time, daily distance moved and directionality), and provide an autocorrelated kernel density estimate of home range size. Then, we used mixed structural equations to integratively model the effects of sex, body mass and proportion of forest cover on movement patterns and home range size, considering the complex net of interactions between these variables. Male giant anteaters presented more intensive space use and larger home range than females with similar body mass, as it is expected in polygynous social mating systems. Males and females increased home range size with increasing body mass, but the allometric scaling of intensity of space use was negative for males and positive for females, indicating different strategies in search for resources. With decreasing proportion of forest cover inside their home ranges, and, consequently, decreasing thermal quality of their habitat, giant anteaters increased home range size, possibly to maximize the chances of accessing thermal shelters. As frequency and intensity of extreme weather events and deforestation are increasing, effective management efforts need to consider the role of forests as an important thermal resource driving spatial requirements of this species. We highlight that both intrinsic and environmental drivers of animal movement should be integrated to better guide management strategies.


Ardea ◽  
2020 ◽  
Vol 107 (3) ◽  
pp. 321
Author(s):  
Hans-Valentin Bastian ◽  
Anita Bastian ◽  
Sabrina Essel ◽  
Dieter Thomas Tietze

2014 ◽  
Vol 38 (4) ◽  
pp. 710-720 ◽  
Author(s):  
Dawn M. Davis ◽  
Kerry P. Reese ◽  
Scott C. Gardner

Sign in / Sign up

Export Citation Format

Share Document