scholarly journals The development of retro-cue benefits with extensive practice: Implications for capacity estimation and attentional states in visual working memory

Author(s):  
Paul Zerr ◽  
Surya Gayet ◽  
Floris van den Esschert ◽  
Mitchel Kappen ◽  
Zoril Olah ◽  
...  

AbstractAccessing the contents of visual short-term memory (VSTM) is compromised by information bottlenecks and visual interference between memorization and recall. Retro-cues, displayed after the offset of a memory stimulus and prior to the onset of a probe stimulus, indicate the test item and improve performance in VSTM tasks. It has been proposed that retro-cues aid recall by transferring information from a high-capacity memory store into visual working memory (multiple-store hypothesis). Alternatively, retro-cues could aid recall by redistributing memory resources within the same (low-capacity) working memory store (single-store hypothesis). If retro-cues provide access to a memory store with a capacity exceeding the set size, then, given sufficient training in the use of the retro-cue, near-ceiling performance should be observed. To test this prediction, 10 observers each performed 12 hours across 8 sessions in a retro-cue change-detection task (40,000+ trials total). The results provided clear support for the single-store hypothesis: retro-cue benefits (difference between a condition with and without retro-cues) emerged after a few hundred trials and then remained constant throughout the testing sessions, consistently improving performance by two items, rather than reaching ceiling performance. Surprisingly, we also observed a general increase in performance throughout the experiment in conditions with and without retro-cues, calling into question the generalizability of change-detection tasks in assessing working memory capacity as a stable trait of an observer (data and materials are available at osf.io/9xr82 and github.com/paulzerr/retrocues). In summary, the present findings suggest that retro-cues increase capacity estimates by redistributing memory resources across memoranda within a low-capacity working memory store.

2021 ◽  
Author(s):  
◽  
Wei Dai

<p>The present research comprises four experiments designed to explore the role of visual and phonological working memory resources in carry operations or intermediate solutions in complex mental addition and multiplication. A special consideration was given to the effect of arithmetic operation on the relative involvement of visual and phonological resources in complex addition and multiplication.  A pilot study was conducted prior to the experiments, aiming to examine the suitability of visual and phonological stimuli for change detection and working memory capacity estimation. Two staff of Victoria University of Wellington with normal or corrected vision attended the pilot study as participants. Pilot Experiments 1 to 4 tested the suitability for probing visual working memory (VWM) capacity of two types of visual stimulus with different feature dimensions: bars of different orientations and Gabor patches with different orientations and spatial frequencies. A single-probe change-detection experimental paradigm was used, with participants making decisions about whether or not probe items were the same as memory items presented previously. Both presentation durations and set sizes were manipulated. Stable estimates of visual working memory capacities were found when Gabor patches with varied spatial frequencies were used, suggesting its utility as a probe for estimating visual working memory capacity. Pilot Experiment 5 was designed to examine the suitability of pronounceable consonant-vowel-consonant non-words as a probe of phonological working memory (PWM). Valid estimates of PWM capacity were found for both participants, suggesting the suitability of phonological non-words as phonological stimuli of assessing PWM capacities and interfering with information phonologically-represented and maintained in working memory.  Experiments 1 to 4 investigated the relative involvement of visual and phonological working memory resources in carry operations or intermediate solutions in mental addition and multiplication. Fifty-six undergraduate students of Victoria University of Wellington participated all experiments, and 48 of them provided valid data for final analysis. A dual-task interference paradigm was used in all experiments, with arithmetic tasks and visual/phonological change-detection tasks either performed alone, or simultaneously. For arithmetic tasks, double-digit addition problems and multiplication problems comprising one single-digit and one double-digit were presented horizontally and continuously, and participants reported the final solutions verbally. For visual change-detection tasks, study items were visually presented to participants for 1,000ms before they disappeared. After a 4000ms retention interval, a probe item was presented and participants judged whether the probe item was the same as one of the memory items. For phonological change-detection tasks, phonological nonwords were verbally presented to participants sequentially. After a 4000ms retention interval, a probe nonword was presented to participants, and they indicated whether or not the probe was the same as one of the study non-words. Both numbers of carry operations involved in the arithmetic problems (zero, one, and two) and levels of visual/phonological loads (low, medium, and high) were manipulated in all experiments.   For all experiments, the effect of the number of carry operations on calculation performance was observed: arithmetic problems involving more carry operations were solved less rapidly and accurately. This effect was enlarged by concurrent visual and phonological loads, evidenced by significant interactions between task conditions and number of carry operations observed in the accuracy analyses of the arithmetic tasks in all experiments except Experiment 2, in which multiplication problems were solved under visual loads. These findings suggest that both visual and phonological resources are required for the temporary storage of intermediate solutions or carry information in mental addition, while for mental multiplication, only evidence for a role of phonological representations in carry operations was found.  For all experiments, the greater performance impairment of carry problems than no-carry problems associated with the presence of working memory loads was not further increased by increasing load level: There were no significant three-way interactions between task conditions, number of carry operations and load levels in accuracy analyses of arithmetic tasks. One possible explanation for this absence of significant three-way interactions might be attributable to some participants switching between phonological and visual working memory for the temporary storage of carrier information or intermediate solutions as a result of decreasing amount of available phonological or visual working memory resources.  In conclusion, the findings of the present research provide support for a role of both visual and phonological working memory resources in carry operations in mental addition, and a role of phonological working memory resources in carry operation in mental multiplication. Thus, it can be concluded that solving mental arithmetic problems involving carry-operations requires working memory resources. However, these results contradict the prediction of the Triple Code Model, which assumes addition mainly relies on visual processing, and multiplication mainly relies on verbal processing, while complex mental arithmetic is solved with the aid of visual processing regardless of the arithmetic operation. Thus, these results challenge the operation-specific involvement of working memory resources in complex mental arithmetic. However, it should be noted that the same arithmetic problems were solved three times by the same participants, which might have encouraged more activation in phonological processing than visual processing due to the practice effect.</p>


Author(s):  
Peter Shepherdson

AbstractWhat influences the extent to which perceptual information interferes with the contents of visual working memory? In two experiments using a combination of change detection and continuous reproduction tasks, I show that binding novelty is a key factor in producing interference. In Experiment 2, participants viewed arrays of colored circles, then completed consecutive change detection and recall tests of their memory for stochastically independent items from the same array. When the probe used in the change detection test was novel (i.e., required a “change” response), subsequent recall performance was worse than in trials with matching (i.e., “no change”) probes, irrespective of whether or not the same item was tested in both phases. In Experiment 2, participants viewed arrays of oriented arrows, then completed a change detection (requiring memory) or direction judgement (not requiring memory) test, followed by recalling a stochastically independent item. Again, novel probes in the first phase led to worse recall, irrespective of whether the initial task required memory. This effect held whether the probe was wholly novel (i.e., a new feature presented at any location) or simply involved a novel binding (i.e., an old feature presented at a new location). These findings highlight the role of novelty in visual interference, consistent with the assumptions of computational models of WM, and suggest that new bindings of old information are sufficient to produce such interference.


2017 ◽  
Author(s):  
Tal Yatziv ◽  
Yoav Kessler

Over the last couple of decades, a vast amount of research has been dedicated to understanding the nature and the architecture of visual short-term memory (VSTM), the mechanism by which currently relevant visual information is maintained. According to discrete-capacity models, VSTM is constrained by a limited number of discrete representations held simultaneously. In contrast, shared-resource models regard VSTM as limited in resources, which can be distributed flexibly between varying numbers of representations, and a new interference model posits that capacity is limited by interference among items. In this paper, we begin by reviewing benchmark findings regarding the debate over VSTM limitations, focusing on whether VSTM storage is all-or-none, and on whether objects’ complexity affects capacity. Afterwards, we put forward a hybrid framework of VSTM architecture, arguing that this system is composed of a two-level hierarchy of memory stores, each containing a different set of representations: (1) Perceptual Memory (PM), a resource-like level containing analog automatically-formed representations of visual stimuli in varying degrees of activation, and (2) visual Working Memory (WM), in which a subset of 3-4 items from PM are bound to conceptual representations and to their locations, thus conveying discrete (digital/symbolic) information which appears quantized. While PM has a large capacity and is relatively non-selective, visual WM is restricted in the number of items that can be maintained simultaneously and its content is regulated by a gating mechanism.


2016 ◽  
Vol 113 (13) ◽  
pp. 3693-3698 ◽  
Author(s):  
John M. Gaspar ◽  
Gregory J. Christie ◽  
David J. Prime ◽  
Pierre Jolicœur ◽  
John J. McDonald

According to contemporary accounts of visual working memory (vWM), the ability to efficiently filter relevant from irrelevant information contributes to an individual’s overall vWM capacity. Although there is mounting evidence for this hypothesis, very little is known about the precise filtering mechanism responsible for controlling access to vWM and for differentiating low- and high-capacity individuals. Theoretically, the inefficient filtering observed in low-capacity individuals might be specifically linked to problems enhancing relevant items, suppressing irrelevant items, or both. To find out, we recorded neurophysiological activity associated with attentional selection and active suppression during a competitive visual search task. We show that high-capacity individuals actively suppress salient distractors, whereas low-capacity individuals are unable to suppress salient distractors in time to prevent those items from capturing attention. These results demonstrate that individual differences in vWM capacity are associated with the timing of a specific attentional control operation that suppresses processing of salient but irrelevant visual objects and restricts their access to higher stages of visual processing.


2013 ◽  
Author(s):  
Robert H. Logie ◽  
Mario Parra ◽  
Stephen Rhodes ◽  
Elaine Niven ◽  
Richard Allen ◽  
...  

2014 ◽  
Vol 76 (7) ◽  
pp. 2015-2030 ◽  
Author(s):  
Philip C. Ko ◽  
Bryant Duda ◽  
Erin Hussey ◽  
Emily Mason ◽  
Robert J. Molitor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document