scholarly journals Allocation of resources in working memory: Theoretical and empirical implications for visual search

Author(s):  
Stanislas Huynh Cong ◽  
Dirk Kerzel

AbstractRecently, working memory (WM) has been conceptualized as a limited resource, distributed flexibly and strategically between an unlimited number of representations. In addition to improving the precision of representations in WM, the allocation of resources may also shape how these representations act as attentional templates to guide visual search. Here, we reviewed recent evidence in favor of this assumption and proposed three main principles that govern the relationship between WM resources and template-guided visual search. First, the allocation of resources to an attentional template has an effect on visual search, as it may improve the guidance of visual attention, facilitate target recognition, and/or protect the attentional template against interference. Second, the allocation of the largest amount of resources to a representation in WM is not sufficient to give this representation the status of attentional template and thus, the ability to guide visual search. Third, the representation obtaining the status of attentional template, whether at encoding or during maintenance, receives an amount of WM resources proportional to its relevance for visual search. Thus defined, the resource hypothesis of visual search constitutes a parsimonious and powerful framework, which provides new perspectives on previous debates and complements existing models of template-guided visual search.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Tobias Feldmann-Wüstefeld ◽  
Anna Schubö

Visual search is impaired when a salient task-irrelevant stimulus is presented together with the target. Recent research has shown that this attentional capture effect is enhanced when the salient stimulus matches working memory (WM) content, arguing in favor of attention guidance from WM. Visual attention was also shown to be closely coupled with action planning. Preparing a movement renders action-relevant perceptual dimensions more salient and thus increases search efficiency for stimuli sharing that dimension. The present study aimed at revealing common underlying mechanisms for selective attention, WM, and action planning. Participants both prepared a specific movement (grasping or pointing) and memorized a color hue. Before the movement was executed towards an object of the memorized color, a visual search task (additional singleton) was performed. Results showed that distraction from target was more pronounced when the additional singleton had a memorized color. This WM-guided attention deployment was more pronounced when participants prepared a grasping movement. We argue that preparing a grasping movement mediates attention guidance from WM content by enhancing representations of memory content that matches the distractor shape (i.e., circles), thus encouraging attentional capture by circle distractors of the memorized color. We conclude that templates for visual search, action planning, and WM compete for resources and thus cause interferences.


2021 ◽  
pp. 1-14
Author(s):  
Anastasia Kiyonaga ◽  
John P. Powers ◽  
Yu-Chin Chiu ◽  
Tobias Egner

Abstract To achieve our moment-to-moment goals, we must often keep information temporarily in mind. Yet, this working memory (WM) may compete with demands for our attention in the environment. Attentional and WM functions are thought to operate by similar underlying principles, and they often engage overlapping fronto-parietal brain regions. In a recent fMRI study, bilateral parietal cortex BOLD activity displayed an interaction between WM and visual attention dual-task demands. However, prior studies also suggest that left and right parietal cortices make unique contributions to WM and attentional functions. Moreover, behavioral performance often shows no interaction between concurrent WM and attentional demands. Thus, the scope of reciprocity between WM and attentional functions and the specific contribution that parietal cortex makes to these functions both remain unresolved. Here, we took a causal approach, targeting brain regions that are implicated in shared processing between WM and visual attention, to better characterize how those regions contribute to behavior. We first examined whether behavioral indices of WM and visual search differentially correlate with left and right parietal dual-task BOLD responses. Then, we delivered TMS over fMRI-guided left and right parietal sites during dual-task WM–visual search performance. Only right-parietal TMS influenced visual search behavior, but the stimulation either helped or harmed search depending on the current WM load. Therefore, whereas the left and right parietal contributions were distinct here, attentional and WM functions were codependent. Right parietal cortex seems to hold a privileged role in visual search behavior, consistent with prior findings, but the current results reveal that behavior may be sensitive to the interaction between visual search and WM load only when normal parietal activity is perturbed. The parietal response to heightened WM and attentional demands may therefore serve to protect against dual-task interference.


Author(s):  
Catherine Charbonneau

The current study consists of two experiments aiming to examine the relationship between visual attention and working memory. The first experiment examines whether the contents of working memory influence the allocation of visual attention. While past studies have shown mixed results, we are attempting to control for external factors which may have affected these findings. The second experiment examines whether perceptual processing of an item can affect the contents of working memory, effectively seeking to examine whether the relationship examined in the first experiment works in the opposite directions. Results are forthcoming.


2019 ◽  
Vol 45 (7) ◽  
pp. 911-935 ◽  
Author(s):  
Tamaryn Menneer ◽  
Kyle R. Cave ◽  
Elina Kaplan ◽  
Michael J. Stroud ◽  
Junha Chang ◽  
...  

Author(s):  
Angela A. Manginelli ◽  
Franziska Geringswald ◽  
Stefan Pollmann

When distractor configurations are repeated over time, visual search becomes more efficient, even if participants are unaware of the repetition. This contextual cueing is a form of incidental, implicit learning. One might therefore expect that contextual cueing does not (or only minimally) rely on working memory resources. This, however, is debated in the literature. We investigated contextual cueing under either a visuospatial or a nonspatial (color) visual working memory load. We found that contextual cueing was disrupted by the concurrent visuospatial, but not by the color working memory load. A control experiment ruled out that unspecific attentional factors of the dual-task situation disrupted contextual cueing. Visuospatial working memory may be needed to match current display items with long-term memory traces of previously learned displays.


Sign in / Sign up

Export Citation Format

Share Document