Sharper attentional tuning with target templates in long-term compared to working memory

Author(s):  
Koeun Jung ◽  
Suk Won Han ◽  
Yoonki Min
2014 ◽  
Vol 112 (2) ◽  
pp. 625-630 ◽  
Author(s):  
Robert M. G. Reinhart ◽  
Geoffrey F. Woodman

Scientists have long proposed that memory representations control the mechanisms of attention that focus processing on the task-relevant objects in our visual field. Modern theories specifically propose that we rely on working memory to store the object representations that provide top-down control over attentional selection. Here, we show that the tuning of perceptual attention can be sharply accelerated after 20 min of noninvasive brain stimulation over medial-frontal cortex. Contrary to prevailing theories of attention, these improvements did not appear to be caused by changes in the nature of the working memory representations of the search targets. Instead, improvements in attentional tuning were accompanied by changes in an electrophysiological signal hypothesized to index long-term memory. We found that this pattern of effects was reliably observed when we stimulated medial-frontal cortex, but when we stimulated posterior parietal cortex, we found that stimulation directly affected the perceptual processing of the search array elements, not the memory representations providing top-down control. Our findings appear to challenge dominant theories of attention by demonstrating that changes in the storage of target representations in long-term memory may underlie rapid changes in the efficiency with which humans can find targets in arrays of objects.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


Author(s):  
Angela A. Manginelli ◽  
Franziska Geringswald ◽  
Stefan Pollmann

When distractor configurations are repeated over time, visual search becomes more efficient, even if participants are unaware of the repetition. This contextual cueing is a form of incidental, implicit learning. One might therefore expect that contextual cueing does not (or only minimally) rely on working memory resources. This, however, is debated in the literature. We investigated contextual cueing under either a visuospatial or a nonspatial (color) visual working memory load. We found that contextual cueing was disrupted by the concurrent visuospatial, but not by the color working memory load. A control experiment ruled out that unspecific attentional factors of the dual-task situation disrupted contextual cueing. Visuospatial working memory may be needed to match current display items with long-term memory traces of previously learned displays.


Author(s):  
Ian Neath ◽  
Jean Saint-Aubin ◽  
Tamra J. Bireta ◽  
Andrew J. Gabel ◽  
Chelsea G. Hudson ◽  
...  

2007 ◽  
Author(s):  
Nathan S. Rose ◽  
Joel Myerson ◽  
Henry L. Roediger ◽  
Sandra Hale

2020 ◽  
Author(s):  
Sam Verschooren ◽  
Yoav Kessler ◽  
Tobias Egner

An influential view of working memory (WM) holds that its’ contents are controlled by a selective gating mechanism that allows for relevant perceptual information to enter WM when opened, but shields WM contents from interference when closed. In support of this idea, prior studies using the reference-back paradigm have established behavioral costs for opening and closing the gate between perception and WM. WM also frequently requires input from long-term memory (LTM), but it is currently unknown whether a similar gate controls the selection of LTM representations into WM, and how WM gating of perceptual vs. LTM sources of information relate to each other. To address these key theoretical questions, we devised a novel version of the reference-back paradigm, where participants switched between gating perceptual and LTM information into WM. We observed clear evidence for gate opening and closing costs in both cases. Moreover, the pattern of costs associated with gating and source-switching indicated that perceptual and LTM information is gated into WM via a single gate, and rely on a shared source-selection mechanism. These findings extend current models of WM gating to encompass LTM information, and outline a new functional WM architecture.


2021 ◽  
pp. 174702182110105
Author(s):  
Spencer Talbot ◽  
Todor Gerdjikov ◽  
Carlo De Lillo

Assessing variations in cognitive function between humans and animals is vital for understanding the idiosyncrasies of human cognition and for refining animal models of human brain function and disease. We determined memory functions deployed by mice and humans to support foraging with a search task acting as a test battery. Mice searched for food from the top of poles within an open-arena. Poles were divided into groups based on visual cues and baited according to different schedules. White and black poles were baited in alternate trials. Striped poles were never baited. The requirement of the task was to find all baits in each trial. Mice’s foraging efficiency, defined as the number of poles visited before all baits were retrieved, improved with practice. Mice learnt to avoid visiting un-baited poles across trials (Long-term memory) and revisits to poles within each trial (Working memory). Humans tested with a virtual-reality version of the task outperformed mice in foraging efficiency, working memory and exploitation of the temporal pattern of rewards across trials. Moreover, humans, but not mice, reduced the number of possible movement sequences used to search the set of poles. For these measures interspecies differences were maintained throughout three weeks of testing. By contrast, long-term-memory for never-rewarded poles was similar in mice and humans after the first week of testing. These results indicate that human cognitive functions relying upon archaic brain structures may be adequately modelled in mice. Conversely, modelling in mice fluid skills likely to have developed specifically in primates, requires caution.


Sign in / Sign up

Export Citation Format

Share Document