scholarly journals Fuel cell power generation technology in future metropolis.

1987 ◽  
Vol 66 (11) ◽  
pp. 924-938
Author(s):  
Nagayuki HORIUCHI
2020 ◽  
Author(s):  
Hao Li ◽  
Ruiyun Zhang ◽  
Chengzhuang Lu ◽  
Jian Cheng ◽  
Shisen Xu ◽  
...  

Abstract As a clean and efficient power generation device, molten carbonate fuel cell(MCFC)can directly convert chemical energy into electrical energy at the operating temperature of 650 degrees, avoiding the heat loss caused by the Carnot cycle, and effectively reducing the emission of CO2 and other pollutants. This paper introduces the background, basic principle, system design and current situation of fused carbonate fuel cell at home and abroad, and explains the technical problems that molten carbonate power generation technology is facing. At the same time, the cost of the molten carbonate power generation system is analyzed, and the present cost and the cost after industrialization are compared and evaluated to provide a reference for the economy of the molten carbonate fuel cell power generation system.


Author(s):  
Abbie Layne ◽  
Scott Samuelsen ◽  
Mark Williams ◽  
Patricia Hoffman

Fuel cells are emerging as a major new power generation technology that is particularly suitable for distributed power generation, high-efficiency, and low pollutant emission. An interesting combined cycle, the “HYBRID,” has recently been scoped “on paper” that portends the potential of ultra-high efficiency (approaching 80%) in which a gas turbine is synergistically combined with a fuel cell into a unique combined cycle. This paper introduces hybrid technology to the gas turbine community as a whole, and summarizes the current and projected activities associated with this emerging concept.


2013 ◽  
Vol 684 ◽  
pp. 680-685 ◽  
Author(s):  
Md. Shahinur Islam ◽  
Tausif Ali ◽  
Ahsan Uddin Ahmed ◽  
Syed Ashraful Karim ◽  
Hossain Mursalin

World climate change challenges and the world’s consistent growing demand for energy during the past decade have brought the need to explore for more renewable energy resources. The continuation of exploring green energy sources results Osmotic Power- a new emission-free source of sustainable energy that can be used to generate electricity. Osmotic power plant is only feasible in places where rivers flow out to the ocean. The leading virtue of osmotic power is that it would be capable to produce a steady and reliable supply of renewable base load power as an alternative of other variable sources like solar or wind. There are some hurdles to generate osmotic power. Developing suitable membrane and initial construction cost are top on of them. Though Osmotic power is years from commercial feasibility but researchers think that it could provide thousands of terawatts of base load power per year around the globe. This paper presents an overview of osmotic power generation system with the analysis of potential benefits and limitations of it.


Author(s):  
Sreelekha Arun

The energy consumption on global scale is continuously increasing, resulting in rapid use of energy resources available. Solar chimney power generation technology hence began to get growing attention as its basic model needs no depleting resources like fossil fuels for its functioning but only uses sunlight and air as a medium. It takes the advantage of the chimney effect and the temperature difference in the collector that produces negative pressure to cause the airflow in the system, converting solar energy into mechanical energy in order to drive the air turbine generator situated at the base of the chimney. Solar Chimney Power Plant (SCPP) brings together the solar thermal technology, thermal storage technology, chimney technology and air turbine power generation technology. However, studies have shown that even if the chimney is as high as 1000 m, the efficiency achievable is only around 3%. Hence, this review paper intents to put together the new technological advancement that aims to improve the efficiency of SCPP.


Sign in / Sign up

Export Citation Format

Share Document