Design and Fabrication of Micro-Cantilever Beam Fiber Bragg Grating Hydrogen Sensor Based on Coated-Palladium Film

2010 ◽  
Vol 37 (7) ◽  
pp. 1784-1788 ◽  
Author(s):  
张晓晶 Zhang Xiaojing ◽  
张博明 Zhang Boming ◽  
陈吉安 Chen Ji′an ◽  
武湛君 Wu Zhanjun
2000 ◽  
Author(s):  
Dejun Feng ◽  
Heliang Liu ◽  
Weigang Zhang ◽  
Chunfeng Ge ◽  
Guiyun Kai ◽  
...  

Sensors ◽  
2017 ◽  
Vol 17 (8) ◽  
pp. 1733 ◽  
Author(s):  
Xuegang Song ◽  
Yuexin Zhang ◽  
Dakai Liang

2012 ◽  
Vol 174 ◽  
pp. 253-257 ◽  
Author(s):  
Jixiang Dai ◽  
Minghong Yang ◽  
Xun Yu ◽  
Kun Cao ◽  
Junsheng Liao

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4478 ◽  
Author(s):  
Jiachen Yu ◽  
Zhenlin Wu ◽  
Xin Yang ◽  
Xiuyou Han ◽  
Mingshan Zhao

A tilted fiber Bragg grating (TFBG) hydrogen sensor coated with a palladium (Pd) membrane by the electroless plating method is proposed in this paper. A uniform layer of Pd metal is fabricated in aqueous solutions by the chemical coating method, which is used as the sensitive element to detect the change of the surrounding refractive index (SRI) caused by hydrogen absorption. The change in SRI causes an unsynchronized change of the cladding modes and the Bragg peak in the TFBG transmission spectrum, thereby eliminating the cross-sensitivity due to membrane expansion and is able to simultaneously monitor the presence of cracks in the pipe, as well as the hydrogen leakage. By subtracting the wavelength shift caused by fiber expansion, the change of SRI, i.e., the information from the H2 level, can be separately obtained. The drifted wavelength is measured for the H2 concentration below the hydrogen explosion limit between 1% and 4%. The chemical-based coating has the advantages of a low cost, a simple operation, and being suitable for coating on long fiber structures. The proposed sensor is able to detect the H2 signal in 5 min at a 1% H2 concentration. The proposed sensor is proved to be able to monitor the hydrogen level without the cross-sensitivity of temperature variation and expansion strains, so could be a good candidate for security applications in industry.


2010 ◽  
Vol 437 ◽  
pp. 359-363
Author(s):  
Hong Li ◽  
Wei Ping Yan ◽  
Ren Sheng Shen ◽  
Ben Yu Wang

Optical spectrum analyzer (OSA) can achieve the higher precision and sensitivity, but it is disadvantageous for translating optical signal into electrical signal. A fiber Bragg grating (FBG) matched filtering system based on equi-intensity cantilever beam was presented in this paper. Strain characteristics in different location of cantilever beam were described, and the strain sensitivity of matching grating demodulation based on equi-intensity cantilever beam was deduced mathematically. Strain characteristics of cantilever beam were verified, and the sensing effect of the system was tested. The Bragg wavelength shift range of the demodulating FBG placed on the cantilever beam reached 10 nm, and scanning velocity was 0.125 nm/s. The system could demodulate slow-altered sensing signal accurately and rapidly.


2013 ◽  
Vol 19 (1) ◽  
pp. 26-30 ◽  
Author(s):  
Jixiang Dai ◽  
Minghong Yang ◽  
Xun Yu ◽  
Hong Lu

Sign in / Sign up

Export Citation Format

Share Document