chemical plating
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 14)

H-INDEX

10
(FIVE YEARS 2)

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2110
Author(s):  
Tra Huong Do ◽  
Xuan Linh Ha ◽  
Thi Tu Anh Duong ◽  
Phuong Chi Nguyen ◽  
Ngoc Bich Hoang ◽  
...  

The ciprofloxacin (CIP) removal ability of a Fe-Cu electrolytic material was examined with respect to pH (2–9), time (15–150 min), shaking speed (100–250 rpm), material mass (0.2–3 g/L), temperature (298, 308, 323) and initial CIP concentration (30–200 mg/L). The Fe-Cu electrolytic materials were fabricated by the chemical plating method, and Fe-C materials were mechanically mixed from iron powder and graphite. The results show that at a pH value of 3, shaking time 120 min, shaking speed 250 rpm, a mass of Fe-Cu, Fe-C material of 2 g/L and initial CIP concentration of 203.79 mg/L, the CIP removal efficiency of Fe-Cu material reached 90.25% and that of Fe-C material was 85.12%. The removal of CIP on Fe-Cu and Fe-C materials follows pseudo-first-order kinetics. The activation energy of CIP removal of Fe-Cu material is 14.93 KJ/mol and of Fe-C material is 16.87 KJ/mol. The positive ΔH proves that CIP removal is endothermic. A negative entropy of 0.239 kJ/mol and 0.235 kJ/mol (which is near zero and is also relatively positive) indicated the rapid removal of the CIP molecules into the removed products.


2021 ◽  
Vol 11 (18) ◽  
pp. 8403
Author(s):  
Lorenzo Fabbri ◽  
Walter Giurlani ◽  
Fabio Biffoli ◽  
Marco Bellini ◽  
Hamish Miller ◽  
...  

Various formulations for electroless deposition, to obtain continuous nanometre-sized and micrometre-sized films of palladium on copper, were compared. We deposited ultrathin films using displacement plating formulations. We obtained continuous films with an equivalent thickness between 6 and 22 nm, measured by exploiting the K-ratio method with SEM-EDS of Pd layers. The Pd films obtained in this step of the work represent a cost-effective catalytic substrate. As a second step, we selected chemical plating as the procedure to obtain palladium films with a thickness in the micrometre range. An ammonia-based Pd chemical plating bath represent one of the most effective chemical plating formulations. To prevent copper substrates from being damaged by ammonia, displacement plating with palladium was also applied as a pre-treatment to make the use of these plating baths a viable way to obtain thicker palladium coatings. Palladium films showing good adherence, compact morphology, and a thickness over 1.5 μm were obtained, proving that the combination of two different electroless techniques was the key to develop a sustainable procedure for micrometre-sized palladium coatings, which could substitute electroplating of Pd in galvanic industry for decorative applications.


2021 ◽  
Vol 8 ◽  
Author(s):  
Longfei Chang ◽  
Dongping Wang ◽  
Jiajia Hu ◽  
Yan Li ◽  
Yanjie Wang ◽  
...  

In this paper, a biological template method is introduced and investigated to fabricate ionic polymer-metal composite (IPMC) strain sensor with bionic hierarchical structures. We utilized the multi-level structure of reed leaf surface, which can improve the contact area between the substrate and the electrode layers. Hierarchical structures were observed on the IPMC samples, including pyramid strips with the width in the range of 60–80 μm as well as synaptic scatters with diameter around 10 μm. In addition, five kinds of sensors with different interface structures were obtained by combining the traditional microneedle roller roughening and chemical plating processes. It was found that the IPMC sensor with reed-leaf and microneedle structure on each side presented the best performance, along with a high linearity, a sensitivity of 62.5 mV/1% and a large generated voltage peak under given mechanical stimuli, which is 3.7 times that of the sample fabricated without roughening.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1772
Author(s):  
Dan Wang ◽  
Zhong Wu ◽  
Fengxian Li ◽  
Xueping Gan ◽  
Jingmei Tao ◽  
...  

Carbon nanotubes (CNTs) reinforced double-layered Cu-Ni composite foams (Cu-Ni/CNT foams) were prepared through chemical plating and electrodeposition, for the purpose of combining enhanced mechanical and electromagnetic shielding properties. The microstructure characterization revealed a quite uniform dispersion of the CNTs embedded in the metal layers, even after heat treatments. The property testing showed the compressive strength, energy absorption capacity and electromagnetic shielding effectiveness (SE) of Cu-Ni/CNTs foams were significantly improved, as compared to Cu-Ni foams. The heat treatments of the composite foams resulted in an interdiffusion of the Cu and Ni layers, causing an increase of compressive strength and a slight decrease of average SE. The possible mechanisms of the property evolution are discussed.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 720
Author(s):  
Do Tra Huong ◽  
Nguyen Van Tu ◽  
Duong Thi Tu Anh ◽  
Nguyen Anh Tien ◽  
Tran Thi Kim Ngan ◽  
...  

Fe-Cu materials were synthesized using the chemical plating method from Fe powder and CuSO4 5% solution and then characterized for surface morphology, composition and structure by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The as-synthesized Fe-Cu material was used for removal of phenol from aqueous solution by internal microelectrolysis. The internal electrolysis-induced phenol decomposition was then studied with respect to various parameters such as pH, time, Fe-Cu material weight, phenol concentration and shaking speed. The optimal phenol decomposition (92.7%) was achieved under the conditions of (1) a pH value of phenol solution of 3, (2) 12 h of shaking at the speed of 200 rpm, (3) Fe-Cu material weight of 10 g/L, (4) initial phenol concentration of 100.98 mg/L and (5) at room temperature (25 ± 0.5 °C). The degradation of phenol using Fe-Cu materials obeyed the second-order apparent kinetics equation with a reaction rate constant of k of 0.009 h−1L mg−1. The optimal process was then tested against real coking wastewater samples, resulting in treated wastewater with favorable water indicators. Current findings justify the use of Fe-Cu materials in practical internal electrolysis processes.


2021 ◽  
Author(s):  
Shixiong Zhai ◽  
Mingliu Li ◽  
Zhendong Jin ◽  
Jiafeng Sun ◽  
hong zhao ◽  
...  

A new strategy of materials design is performed to prepare high performance flexible electrochemical electrode. Carbon nanotubes (CNTs) and nickel/nickelous hydroxide (Ni/Ni(OH)2) are compounded through chemical plating method and hydrothermal...


2019 ◽  
Vol 3 (21) ◽  
pp. 105-109 ◽  
Author(s):  
Guy Stremsdoerfer ◽  
Hamid Omidvar ◽  
Y. Meas

2019 ◽  
Vol 26 (2) ◽  
pp. 205-209 ◽  
Author(s):  
Jingkai NIE ◽  
Guangke WANG ◽  
Dong HOU ◽  
Fu GUO ◽  
Yu HAN

This study first conducted surface modification of Ag-plated Tetrapod-like zinc oxide (T-ZnO) whiskers with the use of dopamine and prepared Ag-plated T-ZnO whiskers (T-ZnO@Ag) by means of chemical plating, in which AgNO3 solutions with different concentrations were used during the preparation. Micro-structures of the prepared T-ZnO@Ag powders were examined to evaluate the effect of AgNO3 concentration on Ag plating performance. Subsequently, conductive Si rubber samples were prepared, the T-ZnO@Ag powders were used as fillers, and the effectiveness of the related electromagnetic shielding was investigated in detail. The results showed that using AgNO3 solution with a concentration of 20 g/L, a continuous Ag coating-layer was observed on the surface of T-ZnO whiskers. It was evident that, when used as fillers, T-ZnO@Ag has a conductive threshold and when the mass fraction of the fillers exceeded 50 %, the T-ZnO@Ag whiskers that were uniformly dispersed in the matrix formed interconnected conductive paths. In this condition, the electromagnetic shielding effectiveness of the prepared T-ZnO@Ag/Si rubber composite reached up 90 dB.


Sign in / Sign up

Export Citation Format

Share Document