Automatic Registration Algorithm for the Point Clouds Based on the Normal Vector

2013 ◽  
Vol 40 (8) ◽  
pp. 0809001 ◽  
Author(s):  
陶海跻 Tao Haiji ◽  
达飞鹏 Da Feipeng
2014 ◽  
Vol 1 (4) ◽  
pp. 223-232 ◽  
Author(s):  
Hao Men ◽  
Kishore Pochiraju

Abstract This paper describes a variant of the extended Gaussian image based registration algorithm for point clouds with surface color information. The method correlates the distributions of surface normals for rotational alignment and grid occupancy for translational alignment with hue filters applied during the construction of surface normal histograms and occupancy grids. In this method, the size of the point cloud is reduced with a hue-based down sampling that is independent of the point sample density or local geometry. Experimental results show that use of the hue filters increases the registration speed and improves the registration accuracy. Coarse rigid transformations determined in this step enable fine alignment with dense, unfiltered point clouds or using Iterative Common Point (ICP) alignment techniques.


Author(s):  
Zhang Jian ◽  
Zhao Fu-Wang

To solve the problem of lacking geometric and topological information for conventional 3D point clouds registration algorithm, this paper proposed a novel 3D point clouds registration algorithm based on improved extended Gaussian image. The proposed registration algorithm first estimates a normal vector and curvature of every point by least square method. Then, according to the normal vector to calculate extended Gaussian image (EGI) and complex extended Gaussian image (CEGI). By using the calculated EGI/CEGI and spherical harmonic function, a correlated function is constructed to calculate 3D rotation space to obtain initial positions coarse registration result. At last, by using the Fourier transform to estimate translation vector and coarse registration, the iterative closest point algorithm is used to obtain the fine registration results. Experiments on three groups of different 3D point clouds are performed to validate the proposed registration algorithm. Experimental results have shown that the proposed algorithm has good performances on registration of different forms of 3D point clouds. The robustness and efficiency of our proposed algorithm can effectively solve the problem that it is difficult to find the target or the homonymic feature points in the registration process of 3D point clouds.


2021 ◽  
Vol 5 (1) ◽  
pp. 59
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

Terrestrial laser scanners (TLS) capture a large number of 3D points rapidly, with high precision and spatial resolution. These scanners are used for applications as diverse as modeling architectural or engineering structures, but also high-resolution mapping of terrain. The noise of the observations cannot be assumed to be strictly corresponding to white noise: besides being heteroscedastic, correlations between observations are likely to appear due to the high scanning rate. Unfortunately, if the variance can sometimes be modeled based on physical or empirical considerations, the latter are more often neglected. Trustworthy knowledge is, however, mandatory to avoid the overestimation of the precision of the point cloud and, potentially, the non-detection of deformation between scans recorded at different epochs using statistical testing strategies. The TLS point clouds can be approximated with parametric surfaces, such as planes, using the Gauss–Helmert model, or the newly introduced T-splines surfaces. In both cases, the goal is to minimize the squared distance between the observations and the approximated surfaces in order to estimate parameters, such as normal vector or control points. In this contribution, we will show how the residuals of the surface approximation can be used to derive the correlation structure of the noise of the observations. We will estimate the correlation parameters using the Whittle maximum likelihood and use comparable simulations and real data to validate our methodology. Using the least-squares adjustment as a “filter of the geometry” paves the way for the determination of a correlation model for many sensors recording 3D point clouds.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1563
Author(s):  
Ruibing Wu ◽  
Ziping Yu ◽  
Donghong Ding ◽  
Qinghua Lu ◽  
Zengxi Pan ◽  
...  

As promising technology with low requirements and high depositing efficiency, Wire Arc Additive Manufacturing (WAAM) can significantly reduce the repair cost and improve the formation quality of molds. To further improve the accuracy of WAAM in repairing molds, the point cloud model that expresses the spatial distribution and surface characteristics of the mold is proposed. Since the mold has a large size, it is necessary to be scanned multiple times, resulting in multiple point cloud models. The point cloud registration, such as the Iterative Closest Point (ICP) algorithm, then plays the role of merging multiple point cloud models to reconstruct a complete data model. However, using the ICP algorithm to merge large point clouds with a low-overlap area is inefficient, time-consuming, and unsatisfactory. Therefore, this paper provides the improved Offset Iterative Closest Point (OICP) algorithm, which is an online fast registration algorithm suitable for intelligent WAAM mold repair technology. The practicality and reliability of the algorithm are illustrated by the comparison results with the standard ICP algorithm and the three-coordinate measuring instrument in the Experimental Setup Section. The results are that the OICP algorithm is feasible for registrations with low overlap rates. For an overlap rate lower than 60% in our experiments, the traditional ICP algorithm failed, while the Root Mean Square (RMS) error reached 0.1 mm, and the rotation error was within 0.5 degrees, indicating the improvement of the proposed OICP algorithm.


2014 ◽  
Vol 571-572 ◽  
pp. 729-734
Author(s):  
Jia Li ◽  
Huan Lin ◽  
Duo Qiang Zhang ◽  
Xiao Lu Xue

Normal vector of 3D surface is important differential geometric property over localized neighborhood, and its abrupt change along the surface directly reflects the variation of geometric morphometric. Based on this observation, this paper presents a novel edge detection algorithm in 3D point clouds, which utilizes the change intensity and change direction of adjacent normal vectors and is composed of three steps. First, a two-dimensional grid is constructed according to the inherent data acquisition sequence so as to build up the topology of points. Second, by this topological structure preliminary edge points are retrieved, and the potential directions of edges passing through them are estimated according to the change of normal vectors between adjacent points. Finally, an edge growth strategy is designed to regain the missing edge points and connect them into complete edge lines. The results of experiment in a real scene demonstrate that the proposed algorithm can extract geometric edges from 3D point clouds robustly, and is able to reduce edge quality’s dependence on user defined parameters.


2016 ◽  
Vol 19 (3) ◽  
pp. 171-181 ◽  
Author(s):  
Reiji Yoshimura ◽  
Hiroaki Date ◽  
Satoshi Kanai ◽  
Ryohei Honma ◽  
Kazuo Oda ◽  
...  

Author(s):  
Y. Xu ◽  
S. Tuttas ◽  
L. Heogner ◽  
U. Stilla

This paper presents an approach for the classification of photogrammetric point clouds of scaffolding components in a construction site, aiming at making a preparation for the automatic monitoring of construction site by reconstructing an as-built Building Information Model (as-built BIM). The points belonging to tubes and toeboards of scaffolds will be distinguished via subspace clustering process and principal components analysis (PCA) algorithm. The overall workflow includes four essential processing steps. Initially, the spherical support region of each point is selected. In the second step, the normalized cut algorithm based on spectral clustering theory is introduced for the subspace clustering, so as to select suitable subspace clusters of points and avoid outliers. Then, in the third step, the feature of each point is calculated by measuring distances between points and the plane of local reference frame defined by PCA in cluster. Finally, the types of points are distinguished and labelled through a supervised classification method, with random forest algorithm used. The effectiveness and applicability of the proposed steps are investigated in both simulated test data and real scenario. The results obtained by the two experiments reveal that the proposed approaches are qualified to the classification of points belonging to linear shape objects having different shapes of sections. For the tests using synthetic point cloud, the classification accuracy can reach 80%, with the condition contaminated by noise and outliers. For the application in real scenario, our method can also achieve a classification accuracy of better than 63%, without using any information about the normal vector of local surface.


Sign in / Sign up

Export Citation Format

Share Document