icp algorithm
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 51)

H-INDEX

19
(FIVE YEARS 4)

2021 ◽  
Vol 2132 (1) ◽  
pp. 012007
Author(s):  
Chun Liu ◽  
Meijing Guang ◽  
Shanshan Yu

Abstract With the rapid development of the construction industry, BIM technology, and 3D laser scanning technology are being used more and more widely, and there are many applications of combining BIM technology with 3D laser scanning technology, such as quality inspection, progress inspection, or digital preservation of ancient buildings. Therefore, this paper proposes a 3D point cloud and BIM model registration scheme based on genetic algorithm and ICP algorithm, firstly, the point cloud data is pre-processed by statistical denoising method for denoising and downsampling, and the BIM model data is converted to format data; then the coarse registration is performed by genetic algorithm, and the accurate registration is performed by ICP algorithm based on KD-tree, and finally, we experimentally verify the feasibility of the algorithm in this paper, and compared with the ICP algorithm, the registration efficiency and accuracy of the algorithm in this paper are greatly improved.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2011
Author(s):  
Ting On Chan ◽  
Yeran Sun ◽  
Jiayong Yu ◽  
Juan Zeng ◽  
Lixin Liu

The Chinese paifang is an essential constituent element for Chinese or many other oriental architectures. In this paper, a new method for detection and analysis of the reflection symmetry of the paifang based on 3D point clouds is proposed. The method invokes a new model to simultaneously fit two vertical planes of symmetry to the 3D point cloud of a paifang to support further symmetry analysis. Several simulated datasets were used to verify the proposed method. The results indicated that the proposed method was able to quantity the symmetry of a paifang in terms of the RMSE obtained from the ICP algorithm, with resistance to the presence of some random noise added to the simulated measurements. For real datasets, three old Chinese paifangs (with ages from 90 to 500 years) were scanned as point clouds to input into the proposed method. The method quantified the degree of symmetry for the three Chinese paifangs in terms of the RMSE, which ranged from 20 to 61 mm. One of the paifangs with apparent asymmetry had the highest RMSE (61 mm). Other than the quantification of the symmetry of the paifangs, the proposed method could also locate which portion of the paifang was relatively more symmetric. The proposed method can potentially be used for structural health inspection and cultural studies of the Chinese paifangs and some other similar architecture.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2589
Author(s):  
Artyom Makovetskii ◽  
Sergei Voronin ◽  
Vitaly Kober ◽  
Aleksei Voronin

The registration of point clouds in a three-dimensional space is an important task in many areas of computer vision, including robotics and autonomous driving. The purpose of registration is to find a rigid geometric transformation to align two point clouds. The registration problem can be affected by noise and partiality (two point clouds only have a partial overlap). The Iterative Closed Point (ICP) algorithm is a common method for solving the registration problem. Recently, artificial neural networks have begun to be used in the registration of point clouds. The drawback of ICP and other registration algorithms is the possible convergence to a local minimum. Thus, an important characteristic of a registration algorithm is the ability to avoid local minima. In this paper, we propose an ICP-type registration algorithm (λ-ICP) that uses a multiparameter functional (λ-functional). The proposed λ-ICP algorithm generalizes the NICP algorithm (normal ICP). The application of the λ-functional requires a consistent choice of the eigenvectors of the covariance matrix of two point clouds. The paper also proposes an algorithm for choosing the directions of eigenvectors. The performance of the proposed λ-ICP algorithm is compared with that of a standard point-to-point ICP and neural network Deep Closest Points (DCP).


Author(s):  
М. Д. Мирненко ◽  
Д. М. Крицький ◽  
О. К. Погудіна ◽  
О. С. Крицька

The subject of the study is the process of mapping the construction of point clouds of technical systems using the algorithm of the nearest points. The goal is to minimize the alignment criterion by converting a set of cloud points Y into a set of cloud points X in a software product that uses an iterative closest point (ICP) algorithm. Objectives: to analyze the properties of input images that contain point clouds; to review the algorithms for identifying and comparing key points; implement a cloud comparison algorithm using the ISR algorithm; consider an example of the algorithm for estimating the approximate values of the elements of mutual orientation; implement software that allows you to compare files that contain point clouds and draw conclusions about the possibility of comparing them. The methods used are: search for points using the algorithm of iterative nearest points, the algorithm for estimating the approximate values of the elements of mutual orientation, the method of algorithm theory for the analysis of file structures STL (standard template library - format template library) format. The following results were obtained. The choice of the ICP algorithm for the task of reconstruction of the object of technical systems is substantiated; the main features of the ISR algorithm are considered; the algorithm of comparison of key points, and also optimization that allows reducing criterion of combination at the reconstruction of three-dimensional objects of technical systems results. Conclusions. The study found that the iterative near-point algorithm is more detailed and accurate when modeling objects. At the same time, this method requires very accurate values and when calculating the degree of proximity, the complexity of calculation by this algorithm increases many times. Whereas the algorithm for estimating the approximate values of the elements of mutual orientation does not require information about the approximate orientation of the point clouds, which simplifies the work and reduces the simulation time. It was found that not all files are comparable. Therefore, the software is implemented, which gives an opinion on the possibility of comparing points in the proposed two files, which contain clouds of points in the structure of the STL format.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5441
Author(s):  
Li Zheng ◽  
Zhukun Li

There are many sources of point cloud data, such as the point cloud model obtained after a bundle adjustment of aerial images, the point cloud acquired by scanning a vehicle-borne light detection and ranging (LiDAR), the point cloud acquired by terrestrial laser scanning, etc. Different sensors use different processing methods. They have their own advantages and disadvantages in terms of accuracy, range and point cloud magnitude. Point cloud fusion can combine the advantages of each point cloud to generate a point cloud with higher accuracy. Following the classic Iterative Closest Point (ICP), a virtual namesake point multi-source point cloud data fusion based on Fast Point Feature Histograms (FPFH) feature difference is proposed. For the multi-source point cloud with noise, different sampling resolution and local distortion, it can acquire better registration effect and improve the accuracy of low precision point cloud. To find the corresponding point pairs in the ICP algorithm, we use the FPFH feature difference, which can combine surrounding neighborhood information and have strong robustness to noise, to generate virtual points with the same name to obtain corresponding point pairs for registration. Specifically, through the establishment of voxels, according to the F2 distance of the FPFH of the target point cloud and the source point cloud, the convolutional neural network is used to output a virtual and more realistic and theoretical corresponding point to achieve multi-source Point cloud data registration. Compared with the ICP algorithm for finding corresponding points in existing points, this method is more reasonable and more accurate, and can accurately correct low-precision point cloud in detail. The experimental results show that the accuracy of our method and the best algorithm is equivalent under the clean point cloud and point cloud of different resolutions. In the case of noise and distortion in the point cloud, our method is better than other algorithms. For low-precision point cloud, it can better match the target point cloud in detail, with better stability and robustness.


Author(s):  
Sergei Voronin ◽  
Artyom Makovetskii ◽  
Vitaly Kober ◽  
Aleksei Voronin

2021 ◽  
Author(s):  
Xiangyu Wu ◽  
Xiufeng Liu ◽  
Tian Zhang ◽  
Xiang Yan ◽  
Tanghui Wang ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Guodong Sun ◽  
Yan Wang ◽  
Lin Gu ◽  
Zhenzhong Liu

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4448
Author(s):  
Jianjian Yang ◽  
Chao Wang ◽  
Wenjie Luo ◽  
Yuchen Zhang ◽  
Boshen Chang ◽  
...  

In order to meet the needs of intelligent perception of the driving environment, a point cloud registering method based on 3D NDT-ICP algorithm is proposed to improve the modeling accuracy of tunneling roadway environments. Firstly, Voxel Grid filtering method is used to preprocess the point cloud of tunneling roadways to maintain the overall structure of the point cloud and reduce the number of point clouds. After that, the 3D NDT algorithm is used to solve the coordinate transformation of the point cloud in the tunneling roadway and the cell resolution of the algorithm is optimized according to the environmental features of the tunneling roadway. Finally, a kd-tree is introduced into the ICP algorithm for point pair search, and the Gauss–Newton method is used to optimize the solution of nonlinear objective function of the algorithm to complete accurate registering of tunneling roadway point clouds. The experimental results show that the 3D NDT algorithm can meet the resolution requirement when the cell resolution is set to 0.5 m under the condition of processing the point cloud with the environmental features of tunneling roadways. At this time, the registering time is the shortest. Compared with the NDT algorithm, ICP algorithm and traditional 3D NDT-ICP algorithm, the registering speed of the 3D NDT-ICP algorithm proposed in this paper is obviously improved and the registering error is smaller.


Sign in / Sign up

Export Citation Format

Share Document