2D Materials and Quasi-2D Materials: Nonlinear Optical Properties and Corresponding Applications

2017 ◽  
Vol 44 (7) ◽  
pp. 0703002 ◽  
Author(s):  
马志军 Ma Zhijun ◽  
魏荣妃 Wei Rongfei ◽  
胡忠亮 Hu Zhongliang ◽  
邱建荣 Qiu Jianrong
Nanophotonics ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 63-97 ◽  
Author(s):  
J.W. You ◽  
S.R. Bongu ◽  
Q. Bao ◽  
N.C. Panoiu

AbstractIn this review, we survey the recent advances in nonlinear optics and the applications of two-dimensional (2D) materials. We briefly cover the key developments pertaining to research in the nonlinear optics of graphene, the quintessential 2D material. Subsequently, we discuss the linear and nonlinear optical properties of several other 2D layered materials, including transition metal chalcogenides, black phosphorus, hexagonal boron nitride, perovskites, and topological insulators, as well as the recent progress in hybrid nanostructures containing 2D materials, such as composites with dyes, plasmonic particles, 2D crystals, and silicon integrated structures. Finally, we highlight a few representative current applications of 2D materials to photonic and optoelectronic devices.


2014 ◽  
Vol 6 (2) ◽  
pp. 1178-1190
Author(s):  
A. JOHN PETER ◽  
Ada Vinolin

Simultaneous effects of magnetic field, pressure and temperature on the exciton binding energies are found in a 9.0 1.0 6.0 4.0 GaAs P / GaAs P quantum dot. Numerical calculations are carried out taking into consideration of spatial confinement effect. The cylindrical system is taken in the present problem with the strain effects. The electronic properties and the optical properties are found with the combined effects of magnetic field strength, hydrostatic pressure and temperature values. The exciton binding energies and the nonlinear optical properties are carried out taking into consideration of geometrical confinement and the external perturbations.Compact density approach is employed to obtain the nonlinear optical properties. The optical rectification coefficient is obtained with the photon energy in the presence of pressure, temperature and external magnetic field strength. Pressure and temperature dependence on nonlinear optical susceptibilities of generation of second and third order harmonics as a function of incident photon energy are brought out in the influence of magnetic field strength. The result shows that the electronic and nonlinear optical properties are significantly modified by the applications of external perturbations in a 9.0 1.0 6.0 4.0 GaAs P / GaAs P quantum dot.


1990 ◽  
Author(s):  
Tapio T. Rantala ◽  
Mark I. Stockman ◽  
Daniel A. Jelski ◽  
Thomas F. George

Sign in / Sign up

Export Citation Format

Share Document