Effect of in situ NbC on Microstructure and Wear Properties of Laser Cladding Co-Based Coatings

2020 ◽  
Vol 47 (3) ◽  
pp. 0302010
Author(s):  
易伟 Yi Wei ◽  
陈辉 Chen Hui ◽  
吴影 Wu Ying ◽  
陈勇 Chen Yong
2021 ◽  
Vol 55 (3) ◽  
Author(s):  
Youfeng Zhang ◽  
Guangyu Han ◽  
Shasha He ◽  
Wanwan Yang

In situ reaction-synthesized TiB-reinforced titanium-matrix composite coatings were fabricated using the rapid, non-equilibrium synthesis technique of laser cladding. The Ti and B mixture was the original powders, while the Ti-matrix composite coatings enhanced with TiB were treated on a Ti-6Al-4V surface with different laser scan powers of 2.5 kW, 3.0 kW and 3.5 kW. The phase composition, microstructure evaluation, and microhardness of the cladding coatings were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and microhardness. The composite coatings mainly consist of black fishbone-shaped -Ti dendrites and white needle-like TiB phases. The microstructure evolution from the top to the bottom of the coatings was investigated. The TiB reinforcement dispersed homogeneously in the composite coatings and a fine microstructure was obtained in a sample fabricated with a laser power of 3.0 kW. The microhardness of the cladding coatings fabricated by different powders was over 2-fold greater than that of the Ti-6Al-4V titanium alloy substrate and achieved a maximum average of 792.2 HV with the laser power of 3.0 kW. The microstructures and properties of the coatings were changed by adjusting of the laser cladding power. The effects of the laser scan power on the microstructure, hardness and friction and wear properties of the laser cladding coatings were investigated and discussed.


2013 ◽  
Vol 20 (03n04) ◽  
pp. 1350034 ◽  
Author(s):  
BAOSHUAI DU

Laser cladding was applied to deposit in situ Fe - Ti - B composite coatings on mild carbon steel with precursor of ferrotitanium, ferroboron and pure Fe alloy powders. The composite coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA). Wear resistance of the laser-cladded Fe - Ti - B coatings was evaluated under dry sliding condition at room temperature using block-on-ring wear tester. Results indicate that in situ reinforcements of TiB 2 and Fe 2 B can be synthesized in the Fe - Ti - B coatings. The amount of TiB 2 increases with the increase of content of ferrotitanium and ferroboron in the precursor. Reinforcements are formed through the liquid-precipitation route following the solidification path of the Fe - Ti - B system. Hardness and wear properties of the coatings improved significantly in comparison to the as-received substrate due to the presence of hard reinforcements.


2008 ◽  
Author(s):  
Ruiquan Kang ◽  
Mingxing Ma ◽  
Wenjin Liu ◽  
Minlin Zhong ◽  
Yide Kan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document