base composite
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 31)

H-INDEX

17
(FIVE YEARS 3)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4304
Author(s):  
Shu-Fen Chuang ◽  
Chu-Chun Liao ◽  
Jui-Che Lin ◽  
Yu-Cheng Chou ◽  
Tsung-Lin Lee ◽  
...  

Blue light (BL) curing on dental resin composites results in gradient polymerization. By incorporating upconversion phosphors (UP) in resin composites, near-infrared (NIR) irradiation may activate internal blue emission and a polymerization reaction. This study was aimed to evaluate the competency of the NIR-to-BL upconversion luminance in polymerizing dental composites and to assess the appropriate UP content and curing protocol. NaYF4 (Yb3+/Tm3+ co-doped) powder exhibiting 476-nm blue emission under 980-nm NIR was adapted and ball-milled for 4–8 h to obtain different particles. The bare particles were assessed for their emission intensities, and also added into a base composite Z100 (3M EPSE) to evaluate their ability in enhancing polymerization under NIR irradiation. Experimental composites were prepared by dispensing the selected powder and Z100 at different ratios (0, 5, 10 wt% UP). These composites were irradiated under different protocols (BL, NIR, or their combinations), and the microhardness at the irradiated surface and different depths were determined. The results showed that unground UP (d50 = 1.9 μm) exhibited the highest luminescence, while the incorporation of 0.4-μm particles obtained the highest microhardness. The combined 20-s BL and 20–120-s NIR significantly increased the microhardness on the surface and internal depths compared to BL correspondents. The 5% UP effectively enhanced the microhardness under 80-s NIR irradiation but was surpassed by 10% UP with longer NIR irradiation. The combined BL-NIR curing could be an effective approach to polymerize dental composites, while the intensity of upconversion luminescence was related to specific UP particle size and content. Incorporation of 5–10% UP facilitates NIR upconversion polymerization on dental composites.


Author(s):  
Puleio Francesco ◽  
Cervino Gabriele ◽  
Luca Fiorillo ◽  
Miragliotta Giuseppe ◽  
Squillacioti Antonella ◽  
...  

AbstractThe aim of this systematic review was to evaluate if the newly introduced bulk fill resin-based composite provides a better marginal sealing in cavity preparations with margins in dental cementum. The population investigation comparison outcome (PICO) framework was: in cavity preparation with margins in dental cementum of human extracted teeth, do bulk fill resin base composites provide a better marginal sealing than non-bulk fill resin-based composites? We performed our research on April 21, 2020. Two authors independently evaluated the abstract and titles for eligibility criteria. Two authors independently extracted the data and assessed the risk of bias in single studies. After the initial screening of 400 abstract and titles, the full text of the articles, that could meet the eligibility criteria, were obtained via the university library. A total of 36 full-text articles were evaluated; 11 articles were finally eligible for the review. Eight studies showed statistically differences, but not significant, in the marginal sealing between bulk fill and nonbulk fill resin-based composite (p > 0.05). One study showed statistically significant differences: SonicFill and Grandio showed better marginal sealing than GrandioSo and SDR(r) (Sirona Dentsply, New York, United States) and the latter two showed better marginal sealing than Filtek Supreme (p < 0.05). One study showed statistically significant less marginal gap of SDR than Filtek Bulk Fill (p = 0.0015) and Filtek Supreme (p < 0.0001). One study showed SDR to have a significantly higher microleakage than the other materials tested (p < 0.05). Based on our current literature review, there are not enough data to establish if bulk fill resin base composite provides a better or a worse marginal sealing at cementum margins.


2021 ◽  
Vol 9 (2) ◽  
pp. 69
Author(s):  
Riza Ummami ◽  
Busroni Busroni ◽  
Bambang Piluharto

Polyaniline is a type of conductive polymer. Bacterial cellulose has high mechanical properties, so it can be made into polyaniline base composite materials. A stable form of polyaniline oxidation at room temperature is emeraldine base. The emeraldine base has a conductivity value of 10-6 S/cm. Dopants can change the shape of emeraldine base to emeraldine salt by protonation process. Emeraldine salt is a conductive form of polyaniline. The conductivity value of emeraldine salt is 0,03-0,07 S/cm. The addition of dopan in synthesis of polymer was carried out to determine its effect on the conductivity value. The disadvantage of polyaniline is that its mechanical properties are weak and easily brittle. Modifications are needed to improve the mechanical properties of polyaniline, one of which is the manufacture of composite. Bacterial celluloce has high mechanical properties so it can be made into polyaniline base composite materials. Synthesis of bacterial cellulose-polyaniline composites by in situ chemical polymerization methods. Syntehsis is started with BC membrane was dipped into aniline solution for about 2h with stirring at room temperature. The BC was immersed into ammonium peroxydisulfate solution for about 30m with stirring. The bacterial cellulose-polyaniline compositions obtained are black color which is characteristic of the emeraldine salt. The highest conductivity value of composite was obtained from the addition of 3,5M HCl dopant which was 4,70x10-4 S/cm. FTIR analysis of composite obtained peak of the characteristic polyanilin was conductive at 1565,92 cm-1 as C=C quinoid ring and 1442,95 cm-1 as C=C benzoid ring.


Author(s):  
Madhur Gupta ◽  
Manas C Ray ◽  
Nagesh D Patil ◽  
Shailesh Ishwarlal Kundalwal

In this work, the carbon nanotube-based hybrid carbon fibre-reinforced composite smart beam constraining the layer of an active constrained layer damping treatment is investigated using an in-house finite element model based on first-order shear deformation theory. The effect of in-plane and transverse-plane actuation of the integrated active constrained layer damping treatment layer on the damping characteristics of the novel smart cantilever hybrid carbon fibre-reinforced composite beam is considered. The parameters affecting the damping characteristics of the hybrid carbon fibre-reinforced composite substrate beam such as the volume fraction of both carbon nanotubes and carbon fibre, and the aspect ratio are also studied. Besides, the micromechanical model based on the mechanics of materials approach is developed to estimate the effective elastic coefficient of novel hybrid carbon fibre-reinforced composite lamina. The effective properties of hybrid carbon fibre-reinforced composite are predicted quantitatively by considering non-bonded interaction formed between carbon nanotubes and the polymer matrix. It is revealed that due to the incorporation of carbon nanotubes into the epoxy matrix, the effective longitudinal, transverse and shear properties of the hybrid carbon fibre-reinforced composite lamina are significantly enhanced. Our outcomes explore that the damping performance of the laminated hybrid carbon fibre-reinforced composite smart beam considering the incorporation of carbon nanotubes shows substantial improvement as compared to the base composite. To bring more clarity, the quantitative relative performance of hybrid carbon fibre-reinforced composite and base composite is presented. Our fundamental analysis sheds the light on the opportunities of developing efficient, high-performance and lightweight carbon nanotubes-based micro-electro-mechanical systems smart structures such as sensors, actuators and distributors.


Author(s):  
Elmira Jafari Navimipour ◽  
Fatemeh Pournaghi Azar ◽  
Sajjad Keshipour ◽  
Saba Nadervand

Objectives: This study aimed to evaluate the thermal stability and monomer elution of bulk fill composite resins cured at different irradiation distances. Materials and Methods: Forty cylindrical-shaped (3×4mm) specimens were fabricated from two composite resins (X-tra fil, X-tra base) and cured from 0 and 7mm distances. In 9 specimens, the degree of conversion was determined by the release of monomers. For this purpose, after curing of composites, they were immersed in 5 mL of 99.9% methanol and stored at 37°C for 24h. The eluted monomer was then analyzed by gas chromatography (GC). Also, thermal stability of one sample from each group was assessed by thermogravimetric analysis (TGA) at a rate of 10°C/min. Data were analyzed using two-way ANOVA and Tukey’s post-hoc test (P<0.05). Results: X-tra fil had significantly higher degree of conversion than X-tra base (P=0.001). Specimens cured at 7mm distance had significantly lower degree of conversion compared with those cured at 0 mm distance (P=0.001). The interaction effect of composite type and distance of light curing unit from the surface of samples was statistically significant (P=0.001). Regarding the TGA results, the lowest and the highest percentages of weight loss were detected in X-tra fil cured at 0 mm distance and X-tra base cured at 7mm distance, respectively. Conclusion: X-tra fil composite cured at 0mm distance had the highest degree of conversion and thermal stability, and X-tra base composite cured at 7mm distance had the lowest values.


2021 ◽  
pp. 37-45
Author(s):  
Jamal Moammar ALDABIB

In removable prosthodontics, poly(methyl methacrylate) (PMMA) is the most suitable for the construction of denture bases. Intra-orally, the subjected stress intensity during the function accelerate the fracture of acrylic resin denture bases. Extra-orally, fracture occurs when dentures are accidentally dropped on a hard surface. The aim of the current study was to investigate the effect of coupling agent concentration on the mechanical properties of Hydroxyapatite/Poly(methyl methacrylate) (HA/PMMA) denture base composite. The Hydroxyapatite (HA) treated with four different ratios (i.e. 0, 5, 7 and 10 wt%) of 3-(trimethoxysily) propyl methacrylate (γMPS) silane coupling agent was added into the PMMA matrix. The mechanical performance of the composite was evaluated by conducting fracture toughness, flexural and tensile tests. An improvement of 13.83% and 9.62% in the tensile and flexural strength respectively, was achieved. The tensile and flexural modulus of the composite increased by 19.04% and 12.5% respectively. A significant improvement of 29.26% in the fracture toughness was observed at 10 wt% of γ-MPS. 10 wt% of γ-MPS is the optimum amount of coupling agent for obtaining balanced mechanical properties.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3025
Author(s):  
Ali Alrahlah ◽  
Rawaiz Khan ◽  
Abdel-Basit Al-Odayni ◽  
Waseem Sharaf Saeed ◽  
Leonel S. Bautista ◽  
...  

Graphene and graphene oxide based nanomaterials have attained immense significance in research because of their matchless physiochemical characteristics. Although potential biomedical applications of graphene have been extensively studied, however, dentistry related applications were rarely explored. This study aimed to investigate the effect of various percentages of surface modified reduce graphene oxide (S-rGO) in combination with SiO2 nanoparticles (bulk filler) on numerous physio-mechanical characteristics of acrylate-based (BisGMA/TEGDMA: 1:1 by wt.) composites. BisGMA/TEGDMA reinforced with 30 wt.% surface modified fumed-silica (S-A200) was considered as control group (base composite). Various concentrations (0, 0.5, 1, 2, 4 wt.%) of S-rGO were incorporated into the base composite via solution casting and high-speed mixing. The obtained composites were characterized for rheological properties before curing by using Rheometer (Anton Paar, USA) in the oscillatory mode under a frequency sweep over a range of angular frequency of 0.1–100 rad/s at 25 °C. The degree of conversion (DC) was measured by using Fourier transform infrared spectroscopy (FTIR). A Nano-indentation test was carried out to obtain nano-hardness and elastic modulus. The surface roughness was measured by optical microscope (Bruker®), 3D non-contact surface profilometer. The structural and morphological properties were studied by using Scanning Electron Microscopy (SEM). The mean and standard deviation were calculated and a simple mean comparisons test was performed for comparison using SPSS. The results revealed that the addition of a tiny proportion of S-rGO considerably increased the nano-indentation hardness, elastic modulus and DC. Conversely, a gradual reduction in viscosity was observed with increasing S-rGO concentration. The study demonstrates that a small fraction of S-rGO in combination with SiO2 could enhance physical, mechanical and rheological properties of acrylate based composites. Thus S-rGO/SiO2 combination could be used as a potential hybrid filler for dental nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document